• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content

Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Like this presentation? Why not share!

DICOM_WG-02_SPIE_2009.ppt - PowerPoint Presentation

on

  • 384 views

 

Statistics

Views

Total Views
384
Views on SlideShare
384
Embed Views
0

Actions

Likes
0
Downloads
5
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    DICOM_WG-02_SPIE_2009.ppt - PowerPoint Presentation DICOM_WG-02_SPIE_2009.ppt - PowerPoint Presentation Presentation Transcript

    • DICOM WG-02 Advances in X-Ray Angiography Projection Imaging and 3D SPIE Medical Imaging 2009, Orlando Authors : Tim Becker European Society of Cardiology Heinz Blendinger Siemens Healthcare Bas Revet Philips Healthcare Francisco Sureda GE Healthcare (Speaker) Rainer Thieme Siemens Medical Solutions (Chair DICOM WG-02)
      • Introduction
        • Present and future of X-Ray Angiography in DICOM
      • 2D Projection Images & Presentation
        • Application Cases of the Enhanced XA SOP Class
        • XA 2D Grayscale Softcopy Presentation State
      • 3D Reconstruction from Projections & Presentation
        • X-Ray 3D SOP Class
        • N-Dimensional Grayscale Softcopy Presentation State
      • Conclusion
      Presentation Outline
    • Overview of X-Ray Angiography in DICOM 2D Projection Images X-Ray Acquisition 3D Reconstruction Approved in the Standard Work in Progress Supp 94 : Radiation Dose Reporting Supp 83 : Enhanced XA/XRF Supp 116 : X-Ray 3D Storage Supp 139-PC : Enhanced XA Informative Annex Supp 140-PC : Presentation State Follow-up of PAS by IEC MT38 – 62B Multi-Dimensional Presentation State Follow-up of IHE REM Profile
    • Workflow 2D X-Ray Angiography 2D Visualization System X-Ray Acquisition System X-Ray Acquisition Procedure X-Ray 2D Projection SOP Class Visualization SOP CLASS Visualization Presentation Procedure 2D Presentation State SOP Class SOP CLASS
      • Supplement 83 – Standard 2004
        • New SOP Class for Multi-frame X-Ray Projection Angiography
        • Re-use of encoding mechanisms of Enhanced CT and MR
        • Enhanced with new attributes to support new applications
      • What can be done with this new SOP Class?
        • Supplement 139 (Part 17 – Informative) – Public Comments passed
          • Describes use cases where the Enhanced XA provides better solutions
          • Provides encoding guidelines for implementors, both creators and users of the Enhanced XA SOP Class
      Enhanced XA: 2D projection images
        • General Definitions :
          • Time relationships, Acquisition Geometry, Pixel Size calibration
        • Application Use Cases
          • Acquisition : Waveform synch, Mechanical Movement, X-Ray controls…
          • Image Registration : 3D structures projected on 2D images
          • Display : Standard pipeline, multi-mask subtraction, per-frame pixel shift
          • Review : Variable review settings per group of frames
          • Processing : Projection pixel calibration
      Enhanced XA: Supplement 139 X-Ray Acquisition Modality X-Ray 2D Projection Enhanced XA SOP CLASS Applications
    • Acquisition Datetime (0008,002A) Acquisition Duration (calculated) Frame “i” Reference Datetime Frame “N” Reference Datetime Frame “1” Acquisition Duration (0018,9220) Content Date (0008,0023) Content Time (0008,0033) … time … Frame “i” Acquisition Datetime Frame “N” Acquisition Datetime FRAME 1 FRAME i FRAME N If Acquisition is synchronized with external time reference then Acquisition Time Synchronized (0018,1800) = YES Exposure Time (0018,9328) = SUMi( Frame “i” Acquisition Duration ) Average Pulse Width (0018,1154) = SUMi(Frame “i” Acquisition Duration) / N Frame “N” Acquisition Duration Frame “1” Acquisition Datetime (0018,9074) Frame “1” Reference Datetime (0018,9151) Enhanced XA – Time Relationships
    • NOTE : Positioner angle values, table position values etc… are measured at the Frame Reference Datetime Frame Acquisition Duration (0018,9220) time Frame Reference Datetime (0018,9151) Frame Acquisition Datetime (0018,9074) R X-ray FRAME “i” Frame Acquisition Number (0020,9156) = “i” PRE-FRAME X-ray Last R-peak prior to the X-ray FRAME “i” Cardiac Trigger Delay Time (0020,9153) Q S T Detector Active Time (0018,7014) Detector Activation Offset from Exposure (0018,7016) Enhanced XA – Time Relationships (one frame)
      • Values per frame are in the Per-frame Functional Groups Seq. (200,9230):
      • In the Frame Content Sequence (0020,9111):
        • Frame Acquisition Duration (0018,9220) in ms of frame « i » =  t i
      • In the Frame Acquisition Sequence (0018,9417):
        • KVP (0018,0060) of frame « i  = kVp i
        • X-Ray Tube Current in mA (0018,9330) of frame « i » = mA i
      Enhanced XA – Acquisition Techniques
      •  X-Ray Isocenter Reference System Macro
      •  X-Ray Geometry Macro
      PATIENT position on the Table TABLE movement POSITIONER movement Detector Binning FOV Rotation & Horiz Flip System set up Image Transformation X-Ray Acquisition Patient Position Description X-Ray Table Description X-Ray Positioner Description FOV Description Pixel Data Storage Detector Description Enhanced XA – Acquisition Geometry
      •  X-Ray Field of View Macro
      •  XA/XRF Acquisition Module
      • X-Ray Detector Module
      • Image Pixel Module
    • Enhanced XA – 3D/2D Registration Acquisition #1 P 1t (x t ,y t ,z t ) f a (P 1 , Table 1 ) +Y +Z +X O P 2p (x p ,y p ,z p ) f c (P 2 , Positioner 2 ) Positioner Movement +Y +Z +X O P 2 (x,y,z) f b (P 1t , Table 2 ) Table Movement +Y +Z +X O P 2 (i,j) f d (P 2 , SID, ISO, FOV) SID, ISO, FOV change +Xp +Zp +Yp +Y +Z +X O Acquisition #2 P 1 (x,y,z) +Y +Z +X O
    • Enhanced XA – Standard Display Pipeline “ TO_LINEAR ” is required if Pixel Intensity Relationship (0028,1040) = LOG Shape = “ IDENTITY ” if (0028,0004) = MONOCHROME2 Shape = “ INVERSE ” if (0028,0004) = MONOCHROME1 X Modality LUT Stored Values VOI LUT P LUT Display Pixel Intensity Relationship LUT Pixel values transformed for specific application (if TO_LINEAR, then pixel values proportional to the X-ray beam intensity) Pixel Intensity Relationship LUT Sequence (0028,9422) Application Pixel Intensity Relationship LUT Pixel values transformed for specific application Pixel Intensity Relationship LUT Sequence (0028,9422) 1 to N Application
    • Enhanced XA – Variable Review Settings FRAME ACQUISITION : DICOM ENCODING : XA/XRF Multi-frame Presentation Module Frame Display Sequence (0018,7022) 1 2 3 4 Acq. Frame rate: 4.0 Purpose: X-Ray control 5 Item 1 >Start Trim (0008,2142) >Stop Trim (0008,2143) >Skip Frame Range Flag (0008,9460) >Recom. Display Frame Rate (0008,9459) = 1 = 5 = SKIP = 4.0 6 7 8 9 Acq. Frame rate: 15.0 Purpose: Contrast Media 10 11 12 13 Item 2 >Start Trim (0008,2142) >Stop Trim (0008,2143) >Skip Frame Range Flag (0008,9460) > Recom. Display Frame Rate (0008,9459) = 6 = 13 = DISPLAY = 15.0 14 15 16 17 Acq. Frame rate: 8.0 Purpose: Contrast Media 18 19 Item 3 >Start Trim (0008,2142) >Stop Trim (0008,2143) >Skip Frame Range Flag (0008,9460) > Recom. Display Frame Rate (0008,9459) = 14 = 19 = DISPLAY = 8.0
    • Enhanced XA – Pixel Shift per frame Mask Subtraction Sequence (0028,6100) #1 #2 #3 Frames DICOM ENCODING: Mask Module FRAME ACQUISITION and PROCESSING: Item 1 >Mask Operation (0028,6101) >Subtraction Item ID (0028,9416) >Applicable Frame Range (0028,6102) >Mask Frame Numbers (0028,6110) >Mask Operation Expl. (0028,6190) = AVG_SUB = 100 = 23 = 1 = Left leg Left Leg Sub ID 100 Item 2 >Mask Operation (0028,6101) >Subtraction Item ID (0028,9416) >Applicable Frame Range (0028,6102) >Mask Frame Numbers (0028,6110) >Mask Operation Expl. (0028,6190) = AVG_SUB = 101 = 23 = 1 = Right leg Right Leg Sub ID 101
    • Enhanced XA – Pixel Shift per frame Item 2 >Frame Pixel Shift Seq (0028,9415) Item 3 >Frame Pixel Shift Seq (0028,9415) Frame #2 Frame #3 Frames #1 #2 #3 DICOM ENCODING: Frame Pixel Shift per frame FRAME ACQUISITION and PROCESSING:
    • Enhanced XA – Pixel Shift per frame Item 2 >Frame Pixel Shift Seq (0028,9415) Item 3 >Frame Pixel Shift Seq (0028,9415) Frame #2 Frame #3 Frames #1 #2 #3 DICOM ENCODING: Frame Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Item 1 >>Subtraction Item ID (0028,9416) >>Mask Sub-pix Shift (0028,6114) = 100 = 0.08.0 Item 1 >>Subtraction Item ID (0028,9416) >>Mask Sub-pix Shift (0028,6114) = 100 = 2.010.0 Left Leg mask Pixel Shift 0.0 8.0 Pixel Shift 2.0 10.0
    • Enhanced XA – Pixel Shift per frame Item 2 >Frame Pixel Shift Seq (0028,9415) Item 3 >Frame Pixel Shift Seq (0028,9415) Frame #2 Frame #3 Frames #1 #2 #3 DICOM ENCODING: Frame Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Item 2 >>Subtraction Item ID (0028,9416) >>Mask Sub-pix Shift (0028,6114) = 101 = 0.00.0 Item 2 >>Subtraction Item ID (0028,9416) >>Mask Sub-pix Shift (0028,6114) = 101 = 0.0-7.0 Right Leg mask Pixel Shift 0.0 0.0 Pixel Shift 0.0 - 7.0 Item 1 >>Subtraction Item ID (0028,9416) >>Mask Sub-pix Shift (0028,6114) = 100 = 0.08.0 Item 1 >>Subtraction Item ID (0028,9416) >>Mask Sub-pix Shift (0028,6114) = 100 = 2.010.0 Left Leg mask Pixel Shift 0.0 8.0 Pixel Shift 2.0 10.0
      • #Px = Object size in “image” pixels
      • D = Object size in mm
      • TH = Table Height (0018,1130)
      • TO = Dist. Table to Object (0018,9403)
      • Beam Angle (0018,9449)
      • SID = Dist. Source-Detector (0018,1110)
      • ISO = Dist. Source-ISO (0018,9402)
      •  Px = Imager Pixel Spacing (0018,1164)
      Enhanced XA - Projection Pixel Size Calibration How to convert from “image pixels” to “object mm in patient” Table TO X - R ay Source Isocenter TH ISO SID Beam Angle #Px D D = # Px *  Px * SOD / SID SOD = ISO - (TH - TO) / cos°(Beam Angle)
    • XA/XRF Projection Presentation State
    • Supplement 140: new XA GSPS IOD (for 2D)
      • Information that may be used to present angiographic projection images
      • It includes capabilities from the Grayscale Softcopy Presentation IOD for specifying:
        • a. the output grayscale space in P-Values
        • b. grayscale contrast transformations including VOI LUT
        • c. selection of the area of the image to display , rotate, flip
        • d. image and display relative annotations, graphics, text and overlays
    • Supplement 140: new XA GSPS IOD (for 2D)
      • Specific capabilities are provided for the presentation of angiographic projection images:
        • a. shutter specifications on a frame-by-frame base,
        • b. mask subtraction including regional pixel shift
        • c. presentation of sets of frames
          • Similar to the XA/XRF Multi-Frame Presentation Module of the Enhanced XA/XRF
    • XA Grayscale Softcopy Presentation State
      • Shutter per frame
      • The shutter coordinates per-frame may be modified in post-review
      Frame #1 Frame #2 Frame #3 Frame #4 Frame #5
      • Grayscale Contrast Transformations
      • The sequence of transformations from stored pixel values into P-Values is explicitly defined in a conceptual model
    • XA Grayscale Softcopy Presentation State  mask subtraction & regional pixel shift Contrast Frame(s) Mask Frame(s) « TO_LOG  » LUT If Pixel Intensity Relationship is not LOG If Pixel Intensity Relationship is not LOG « TO_LOG » LUT Pixel Shift & Anatomic Background Visibility SUB VOI LUT … Else Else
    • XA Grayscale Softcopy Presentation State  Regional pixel shift Applicable pixel shift in case of multiple pixel shift regions
    • Sup 140 – Example of Regional Pixel Shift Mask frame: non-injected structures (bones, soft-tissues…)
    • Sup 140 – Example of Regional Pixel Shift Contrast frame: injected vessels – background structures moved since the mask acquisition
    • Sup 140 – Example of Regional Pixel Shift Subtraction without pixel shift: background structures are visible
    • Sup 140 – Example of Regional Pixel Shift Regional Pixel Shift: Select region 1
    • Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel Shift (Row) Regional Pixel Shift: Apply shift to mask on region 1
    • Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel Shift (Row)
    • Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel Shift (Row)
    • Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel Shift (Row) … until background structures are not visible anymore
    • Sup 140 – Example of Regional Pixel Shift Regional Pixel Shift: Select region 2
    • Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Regional Pixel Shift: Apply shift to mask on region 2
    • Sup 140 – Example of Regional Pixel Shift Regional Pixel Shift: Select region 3
    • Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Regional Pixel Shift: Apply shift to mask on region 3
    • Sup 140 – Example of Regional Pixel Shift Subtraction with regional pixel shift: background structures are not visible anymore
    • 3D X-Ray Angiography
    • Workflow 3D X-Ray Angiography 3D Reconstruction System X-Ray Acquisition System 3D Visualization System X-Ray Calibration Procedure Calibration Data Proprietary X-Ray Acquisition Procedure X-Ray 2D Projection SOP Class SOP CLASS 3D Storage SOP Class Reconstruction Procedure Visualization SOP CLASS Visualization Presentation Procedure 3D Presentation State SOP Class In progress
      • Supplement 116 – In standard 2007
        • New SOP Class for Multi-frame X-Ray 3D from projections
        • Re-use of encoding mechanisms of Enhanced CT and MR
        • Re-use volumic descriptions of Enhanced CT and MR
        • Additional information of the reconstruction from projections
      • What can be done with this new SOP Class?
        • Basic 3D visualization (slices)
        • References to 2D projections
        • Description of the reconstruction application
        • Relationship to the Equipment Coordinate System
        • ...
      X-Ray 3D Angiography
    • X-Ray 3D Angiography – Rotational Acquisition Frame #5: X-ray settings 5 Geometry settings 5 Frame #2: X-ray settings 2 Geometry settings 2 Frame #3: X-ray settings 3 Geometry settings 3 Frame #4: X-ray settings 4 Geometry settings 4 Frame #1: X-ray settings 1 Geometry settings 1 Optimized 3D Reconstruction
    • X-Ray 3D Angiography – Reference to 2D 2D Projection SOP Instance «A» X-Ray 3D SOP Instance Contributing Sources Sequence (0018,9506) SOP Instance description X-Ray 3D Acquisition Sequence (0018,9507) Acquisition description X-Ray 3D Reconstruction Sequence (0018,9530) Reconstruction description Per-Frame Func Groups Sequence (5200,9230) Frame description M1... ...M2 Mask Contrast C1... ...C2 1... ...N Mask Reconstruction 1 ...N+k N+1... SUB Reconstruction 2 Recon #2: Acquisition Index = 12 Frames # N+1 to # N+k : Recon Index = 2 Acq #2: Source Img Seq = A: C1 to C2 Acq #1: Source Img Seq = A: M1 to M2 Recon #1: Acquisition Index = 1 Frames # 1 to # N : Recon Index = 1 = SOP Inst “A” Source #1: Contrib. SOP Inst
    • X-Ray 3D Angiography - Relationship to Equipment Patient Oriented Coordinate System of the 3D slices P ( B x, B y, B z) Image to Equipment Matrix (0028,9520) Enhanced XA: Isocenter Reference System Equipment Coordinate System of the 2D projections P ( A x, A y, A z) +Y +Z +X O
    • X-Ray 3D Angiography Presentation State
    • X-Ray 3D Angiography – Presentation State
      • Needs for 3D Angiography Presentation
        • Presentation features common to all 3D
        • Speficic presentation of X-Ray 3D Angiography:
          • Acquisition 3D shutter for collimation
          • Volume Subtraction and voxel shift
          • Stabilized point in all volumes (e.g. cardiac wall motion, stent stabilized)
          • Catheter tracking trajectory in one volume
          • 2D-3D blending presentation (3D conic projection on 2D fluoroscopy)
      • N-Dimensional Presentation State
        • Work Item 2008-04-C. Addresses needs of multi-modalities
        • Led by Working Group 11, participation of Web3D and other working groups
        • Supplement in progress...
      • Supplement 139 – Enhanced XA application cases
        • In Public Comments. Informative (DICOM Part 17)
        • Will facilitate the adoption of the Enhanced XA (Sup 83)
      • Supplement 140 – XA/XRF Presentation State
        • In Public Comments. Enables:
            • shutter on a frame-by-frame base,
            • mask subtraction including regional pixel shift
            • presentation of set of frames
      • X-Ray 3D Angiography
        • New IOD approved in Standard 2007 (Sup 116)
        • 3D Presentation State on-going...
      Conclusion Contact WG-02 chairman: francisco.sureda@med.ge.com