Upcoming SlideShare
Loading in …5
×

# Fire Pump Short Circuit and WIC Considerations

1,332 views
1,071 views

Published on

Short Circuit and WIC Considerations for Motor Driven Fire Pump and Other Motor Controllers.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

• Be the first to like this

No Downloads
Views
Total views
1,332
On SlideShare
0
From Embeds
0
Number of Embeds
10
Actions
Shares
0
Downloads
60
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Fire Pump Short Circuit and WIC Considerations

1. 1. Short Circuit (WIC) Testing and Parameters. - for - F.M. Approvals - by - James S. Nasby Columbia Engineering
2. 2. Topics to be Covered <ul><li>High Current Effects </li></ul><ul><li>Medium Current Effects </li></ul><ul><li>Breaking the Circuit (Clearing the Fault) </li></ul><ul><li>Effects and Construction </li></ul><ul><li>Components </li></ul><ul><li>Design Parameters </li></ul><ul><li>Testing </li></ul><ul><li>Safety (Arc Flash & PPE Requirements) </li></ul>
3. 3. Definitions <ul><li>Ip = Peak Current Attained </li></ul><ul><li>I 2 t = Total &quot;Energy&quot; (amp 2 -seconds) </li></ul><ul><ul><li>I 2 x R = P (Power in watts) & </li></ul></ul><ul><ul><li>P x t = E (Energy in watt-seconds or joules), but </li></ul></ul><ul><ul><li>R is a constant so I 2 t ~ Energy </li></ul></ul><ul><li>P.F. Power Factor = Cosine of Phase Angle between the voltage and current </li></ul><ul><ul><li>Higher Current Circuits Tend to be More Inductive </li></ul></ul><ul><ul><li>Hence Lower Power Factor </li></ul></ul><ul><ul><li>Lower Power Factor Current Flow is Harder to Interrupt since </li></ul></ul><ul><ul><ul><li>The Current is Still Flowing at Voltage Zero Crossings, -and- </li></ul></ul></ul><ul><ul><ul><li>The Voltage is Non-Zero at Current Zero Crossings </li></ul></ul></ul>
4. 4. More Definitions <ul><li>Current Limiting = Fuses or Breakers (or Blow Apart Isolating Switches) which Completely Clear (Interrupt Current Flow) Prior to the First Half Line Cycle (8.33 mSec @ 60Hz or 10 mSec @ 50 Hz) </li></ul><ul><li>Inductive Circuit - Circuit where the Current Lags the Voltage. In Capacitive Circuits it Leads instead. </li></ul><ul><li>Blow Apart Design = Current Flows in a &quot;U&quot; Shape Path which Creates Opposing Magnetic Force at High Currents. When said Force Exceeds Spring Force, Contacts Begin to Separate. </li></ul>
5. 5. Yet More Definitions <ul><li>IEC Type 1 Protection = Basically the U.L. Criteria, Namely that Equipment: </li></ul><ul><ul><li>Won't Start a Fire </li></ul></ul><ul><ul><li>Won't Become a Shock Hazard </li></ul></ul><ul><ul><li>Will Contain the Event (Parts Stay Inside) </li></ul></ul><ul><ul><li>Equipment May (and usually is) Damaged Beyond Use or Safe Operation </li></ul></ul><ul><li>IEC Type 2 Protection = Basically the U.L. Criteria, Namely that Equipment: </li></ul><ul><ul><li>Meets all of Type 1 Protection - and - </li></ul></ul><ul><ul><li>Equipment is Largely Undamaged </li></ul></ul><ul><ul><li>E.g.: Still Functional; although some repair may be needed. </li></ul></ul>
6. 6. Still More Definitions <ul><li>First Half Cycle Offset </li></ul><ul><ul><li>Occurs in Inductive A.C. Circuits </li></ul></ul><ul><ul><li>Maximum when Circuit is Closed at a Voltage Zero Crossing </li></ul></ul><ul><ul><li>Minimized when Circuit is Closed at a Voltage Peak </li></ul></ul><ul><ul><li>This is Because Inductive Component of Current Lags the Voltage by 90 Degrees </li></ul></ul><ul><li>This also affects Motor Starting Inrush Current </li></ul><ul><ul><li>Max Theoretical Peak Current = 17 x FLA </li></ul></ul><ul><ul><li>Max &quot;Practical&quot; = Approx. 13 x FLA </li></ul></ul>
7. 7. First Half Cycle Offset Waveforms 2.83 x LRA = 6 x 2.83 x FLA = 17.0 x FLA Maximum Theortical This curve shows starting a motor which still has BACK EMF (voltage) present.
8. 8. Parametric Considerations <ul><li>Higher Ip Results in Magnetic Effects which Tends to Pull Conductors out of Lugs, especially on Parallel Runs </li></ul><ul><li>Higher I 2 t causes Greater Arcing, Overpressure , Heating Damage and Arc Flash Energies </li></ul><ul><li>Higher Can Come from: </li></ul><ul><ul><li>Higher Available S.C. (Fault) Current </li></ul></ul><ul><ul><li>Higher Power Circuits </li></ul></ul><ul><ul><li>More Direct (Lower Impedance) Short Circuit </li></ul></ul>
9. 9. Type of Faults (Shorts) <ul><li>Fault to Ground </li></ul><ul><li>Line to Line (Phase to Phase) </li></ul><ul><li>Bolted (Solidly) Fault </li></ul><ul><li>Medium Current Faults (Impedance Faults) </li></ul><ul><li>Arcing Fault </li></ul><ul><li>Lower Level Faults </li></ul>
10. 10. Higher Level Faults <ul><li>May Create Higher Overpressure </li></ul><ul><li>May Create Higher Arc Fault Energy </li></ul><ul><li>May be Easier to Clear than Lower Level Faults </li></ul><ul><ul><li>Causes Breakers to Begin to Open Faster </li></ul></ul><ul><ul><li>Causes Fuses to Melt and Begin Arcing Sooner </li></ul></ul><ul><li>Usually Create Higher Ip Peak Currents </li></ul><ul><li>May Result in Lower I 2 t Energy (and resulting Overpressure) </li></ul>
11. 11. Lower (Medium) Level Faults <ul><li>May Create Higher Overpressure </li></ul><ul><li>May Create Higher Arc Vault Energy </li></ul><ul><li>May be Harder to Clear than Lower Level Faults </li></ul><ul><ul><li>Causes Breakers to Begin to Open Later </li></ul></ul><ul><ul><li>Causes Fuses to Melt and Begin Arcing Later </li></ul></ul><ul><li>Usually Create Lower Ip Peak Currents </li></ul><ul><li>May Result in Higher or Lower I 2 t Energy (and resulting Overpressure) </li></ul>
12. 12. Low Level and Arcing Faults <ul><li>Arcing Faults Tend to Be Low Level; but, May Be Medium Level </li></ul><ul><li>Current Limiting Usually Won't Occur </li></ul><ul><ul><li>Clearing May Depend on Long Time Characteristics </li></ul></ul><ul><ul><li>May take Seconds or Longer to Clear </li></ul></ul><ul><li>Overpressure May Be Low </li></ul><ul><li>However, Significant Damage Will Occur </li></ul>
13. 13. Breaking the Fault <ul><li>OCP Device Must Wait for a Zero Crossing of Voltage and Current (or as Close to same as possible) -or- </li></ul><ul><ul><li>Restive (1.0 PF) Circuits are Easiest to Clear </li></ul></ul><ul><ul><li>Lower Inductance Circuits (Higher PF) are next easiest </li></ul></ul><ul><ul><li>Lowest PF (Most Inductive) Circuits are Hardest </li></ul></ul><ul><li>Or Must Limit the Current, Usually while the Current is Still Rising </li></ul>
14. 14. Power Factor Waveforms
15. 15. Power Factor Waveforms
16. 16. Typical Fire Pump Controller Breaker Curve Notes : 1) “F” Frame = 250 Amp Frame Rating. (260 x 250A = ~ 65 Kamp) 2) Typically two devices are used in series (I/S + C/B) to achieve ratings up to 100 Kamp. 3) Ratings to 200 Kamp are available 4) Curve shown is different for Current Limiting Breakers
17. 17. Typical EFPC Ratings Nameplates Note
18. 18. NFPA Required WIC Rating WIC = Short Circuit W ithstand and I nterrupting C apacity Rating Controller WIC Rating Must Equal or Exceed the Available Short Circuit Current from the Power Source. Note: Some controllers now being sold with WIC’s below 100 Kamp. This doubles need to check available fault (S.C.) current.
19. 19. What’s Wrong with This Picture?
20. 20. Main Reason for Bolted Fault Short Circuits… … and for Motor Junction Box Explosion. Note that Workmanship is Vital.
21. 21. Cause for Overpressure
22. 22. Cause – cont’d
23. 23. Clearing the Fault (Safely Breaking the Circuit) <ul><li>Single Phase Arcs are interrupted 120 times per second, although inductive loads obviate this to at least some degree. </li></ul><ul><li>Three Phase Arcs are Continuous (No Zero Crossing). They Rotate Around the Three Poles of Whatever is Arcing. </li></ul>
24. 24. Testing UL-218 & FM-1321/23 <ul><li>Short Circuit Test: </li></ul><ul><ul><li>Parameters </li></ul></ul><ul><ul><li>Criteria </li></ul></ul><ul><ul><li>Dielectric Voltage - Withstand Test </li></ul></ul><ul><ul><li>Shock Hazard </li></ul></ul>
25. 25. Testing UL-218 & FM-1321/23 <ul><li>Short Circuit Test - Fault Currents </li></ul><ul><ul><li>From 10,000* Amperes test current to a maximum of 200,000 Amperes. </li></ul></ul><ul><ul><li>Tested at 100 - 105% of rated voltage. </li></ul></ul><ul><ul><li>Power factor range from 0.80 through 0.20 depending on test current. </li></ul></ul><ul><li>* = Minimum Allowed for 400 Hp </li></ul>
26. 26. Testing UL-218 & FM-1321/23 <ul><li>Short Circuit Test. </li></ul><ul><ul><li>No parts discharge from the enclosure. </li></ul></ul><ul><ul><li>No damage to a conductor or terminal connector. </li></ul></ul><ul><ul><li>No breakage of insulating bases which would compromise mounting integrity. </li></ul></ul><ul><ul><li>Door must remain closed only by the intended latch mechanism, no major deformation. </li></ul></ul><ul><ul><li>Circuit breaker must remain operable. </li></ul></ul>
27. 27. Testing UL-218 & FM-1321/23 <ul><li>Short Circuit Test: </li></ul><ul><ul><li>Closing Test (UUT Closes on Fault) </li></ul></ul><ul><ul><li>Withstand Test (Voltage Applied to UUT with current path already closed) </li></ul></ul><ul><li>Must not Blow 30 Amp Ground Fuse (or wire link) </li></ul><ul><li>After Testing: </li></ul><ul><ul><li>Dielectric Voltage - Withstand Test </li></ul></ul><ul><ul><li>Door Wiring Flexing Test </li></ul></ul><ul><ul><li>Circuit breaker must remain operable. </li></ul></ul>
28. 28. Testing UL-218 & FM-1321/23 <ul><li>Dielectric Voltage - Withstand Test </li></ul><ul><ul><li>Tested at twice the rated voltage but no less than 900 Volts </li></ul></ul><ul><ul><li>Between line and load terminals of C.B. and I.S. in open position. </li></ul></ul><ul><ul><li>Between terminals of opposite polarity on C.B. and I.S. in open position </li></ul></ul><ul><ul><li>Between live parts and enclosure with C.B. and I.S. both opened and closed </li></ul></ul>
29. 29. Testing UL-218 & FM-1321/23 <ul><li>This is to assure that the unit has Not Become a Shock Hazard or a Fire Hazard, and Can Be Deenergized. </li></ul><ul><li>The UUT May be otherwise Destroyed </li></ul><ul><ul><li>Type 1 Criteria = Non-Functional After a Short </li></ul></ul><ul><ul><li>Unless Type 2 Criteria is verified </li></ul></ul>
30. 30. Testing UL-218 & FM-1321/23 <ul><li>Allowed to Change Components Between Tests </li></ul><ul><ul><li>Never Needed for M.C.S. for Full Service </li></ul></ul><ul><ul><li>Should Not be needed for IEC Type &quot;2&quot; </li></ul></ul><ul><ul><li>Commonly Needed Otherwise </li></ul></ul><ul><li>Paper Coordination Requires </li></ul><ul><ul><li>Test Data ( I 2 t and Ip) for </li></ul></ul><ul><ul><ul><li>Component I/S and/or C/B: Let Thru Less Than Controller Withstood. </li></ul></ul></ul><ul><ul><ul><li>Controller (WIC): How Much Withstood or How Much Delivered </li></ul></ul></ul><ul><ul><ul><li>Other Components: (Contactors, Xfer Switches, Etc.) Withstand more than Controller will Deliver? </li></ul></ul></ul>
31. 31. Arc Flash and PPE Requirements <ul><li>NFPA 70E (Workplace Safety) requires that Equipment be marked where installed. This requires a specific Short Curcuit Available (Available Fault Current) study along with the environment (Indoors, Outdoors, Room Layout, No. of Doors, etc.) </li></ul><ul><li>The Arc Energy is then calculated which then yields the PPE level of protective clothing required. </li></ul>
32. 32. PPE Levels Defined - NFPA-70E <ul><li>Table 130.7(C)(11) Protective Clothing Characteristics </li></ul><ul><li>Typical Protective Clothing Systems </li></ul><ul><li>Required Minimum </li></ul><ul><li>Hazard/Risk Clothing Description Arc Rating of PPE </li></ul><ul><li>Category (Typical number of clothing layers is given in parentheses) [J/cm2(cal/cm2)] </li></ul><ul><li>0 Non-melting, flammable materials (i.e., untreated cotton, wool, </li></ul><ul><li>rayon, or silk, or blends of these materials) with a fabric weight </li></ul><ul><li>at least 4.5 oz/yd2 (1) N/A </li></ul><ul><li>1 FR shirt and FR pants or FR coverall (1) 16.74 (4) </li></ul><ul><li>2 Cotton underwear — conventional short sleeve and brief/shorts, </li></ul><ul><li>plus FR shirt and FR pants (1 or 2) 33.47 (8) </li></ul><ul><li>3 Cotton underwear plus FR shirt and FR pants plus FR coverall, or </li></ul><ul><li>cotton underwear plus two FR coveralls (2 or 3) 104.6 (25) </li></ul><ul><li>4 Cotton underwear plus FR shirt and FR pants plus multilayer </li></ul><ul><li>flash suit (3 or more) 167.36 (40) </li></ul><ul><li>Note: Arc rating is defined in Article 100 and can be either ATPV or EBT. ATPV is defined in ASTM F 1959-99 as the incident energy on a fabric </li></ul><ul><li>or material that results in sufficient heat transfer through the fabric or material to cause the onset of a second-degree burn based on the Stoll curve. </li></ul><ul><li>EBT is defined in ASTM F 1959-99 as the average of the five highest incident energy exposure values below the Stoll curve where the specimens </li></ul><ul><li>do not exhibit breakopen. EBT is reported when ATPV cannot be measured due to FR fabric breakopen. </li></ul>Note: See Also: Table 130.7(C)(10) Protective Clothing and Personal Protective Equipment (PPE) Matrix
33. 33. Selective Coordination <ul><li>NFPA-70 (NEC ® ) §700.27 & 400.18 require Selective Coordination. </li></ul><ul><li>It is Important to Note that the Fire Pump is Usually the Largest Load on the Emergency System, and that it Can, and Does Create a Bolted Fault on the System. </li></ul><ul><li>Selective Coordination prevents the Fire Pump from taking out Other (All Other) Emergency Loads, and vice versa. </li></ul>
34. 34. JSN on the air http://www.cooperbussmann.com/presentations/player.html
35. 35. Questions ?