SlideShare a Scribd company logo
1 of 37
Download to read offline
1. FUNDAMENTOS SOBRE
DESLIZAMIENTOS.
M. Sc. Rolando Mora Chinchilla
Los movimientos en masa son procesos de la
Geodinámica Externa, los cuales modifican
las diferentes formas del terreno. Los
deslizamientos, a su ves, son la principal
manifestación de los movimientos en masa.
Los deslizamientos, como todos los
movimientos en masa, involucran el
movimiento, pendiente abajo, de los
materiales que componen la ladera (Fig. 1.1)
bajo la influencia de la gravedad y pueden
ser disparados por lluvias, sismos y actividad
humana.
Fig. 1.1 Deslizamiento Arancibia (1993)
(foto R. Mora)
1.1 TIPOS DE MOVIMIENTOS.
Los deslizamientos pueden ocurrir como:
caídas, basculamientos, separaciones
laterales, deslizamientos o flujos.
Caídas: masas desprendidas de pendientes
muy fuertes o escarpes, que se mueven en
caída libre, dando tumbos (saltos) o ruedan
ladera abajo (Fig. 1.2).
Fig. 1.2 Caída de rocas (Varnes, 1978).
Basculamientos: rotación de uno o más
elementos alrededor de un punto pivote (Fig.
1.3).
Fig. 1.3 Basculamiento de columnas de
roca (Varnes, 1978)
Separaciones laterales: movimiento de
extensión lateral acompañado por
fracturamiento cortante o tensional (Fig. 1.4).
Fig. 1.4 Separación lateral (Varnes, 1978)
Deslizamientos: desplazan masas a lo largo
de uno o más planos discretos. Pueden ser
rotacionales o translacionales en su
movimiento.
El movimiento rotacional se da donde la
superficie de ruptura es curva, la masa rota
hacia atrás alrededor de un eje paralelo a la
ladera (Fig. 1.5).
Fig. 1.5 Deslizamiento rotacional (Skinner
& Porter, 1992)
El movimiento translacional se da cuando la
superficie de ruptura es más o menos planar
o suavemente ondulante y la masa se mueve
paralela a la superficie del terreno (Fig. 1.6).
Fig. 1.6 Deslizamiento translacional
(Skinner & Porter, 1992)
Flujos: masas que se mueven como
unidades deformadas, viscosas, sin un plano
discreto de ruptura (Fig. 1.7).
Fig. 1.7 Flujo de detritos (Skinner & Porter,
1992)
Algunos deslizamientos pueden presentar
más de un tipo de movimiento, en este caso
se describen como complejos.
1.2 TIPOS DE MATERIALES.
Los deslizamientos pueden involucrar
desplazamientos en roca, suelo o una
combinación de ambos.
Roca se refiere a la roca dura o firme, la cual
se encontraba intacta y en su sitio antes del
movimiento
Suelo se entiende como un conjunto de
partículas sueltas, no consolidadas o roca
pobremente cementada o agregados
inorgánicos. El suelo puede ser residual
(formado en el sitio) (Fig. 1.8) o material
transportado.
El suelo se puede describir como detritos
(suelo de grano grueso) o suelo propiamente
dicho (suelo de grano fino). El detrito es un
suelo con un 20 a 80% de fragmentos
mayores de 2 mm. Suelo fino es el que está
compuesto de más del 80% de fragmentos
menores de 2 mm.
Zona A: arena, limo y arcilla sin
estructura. Pueden encontrarse
bloques en la superficie
Zona B: material residual con
bloques de roca. El porcentaje de
roca es menor del 50%. Los
bloques son redondeados y no se
encuentran interconectados
Zona C: Bloques de roca con
material residual a lo largo de las
discontinuidades. El porcentaje de
roca es de 50-90% y los bloques
son angulares y se encuentran
interconectados
Zona D: Más de 90% de roca.
Poco material residual a lo largo de
las discontinuidades, las que
pueden encontrarse manchadas
con óxidos de hierro
Fig. 1.8 Perfil idealizado de suelo residual
(Ruxton & Berry, 1957)
1.3 REFERENCIAS BIBLIOGRÁFICAS.
Ruxton, B.P. & Berry, L., 1957: Weathering of
granite and associated erosional features in
Hong Kong. Bulletin of the Geological Society
of America, vol. 68, pp 1263-1291.
Skinner, B.J. & Porter, S.C., 1992: The
Dynamic Earth: an introduction to physical
geology. II edition, John Wiley & Sons, Inc.
New York. 570 p.p.
Varnes, D.J., 1978: Slope Movement: Types
and Proceses. In Scuster & Krizek, 1978:
Landslides: Analysis and Control. Special
report 176. Transportation Research Board,
Comisión on Sociotechnical Systems,
National Research Council. National
Academy of Sciences, Washungton, D.C. 234
p.p.
2. LAS PARTES DE UN DESLIZAMIENTO.
M.Sc. Rolando Mora Chinchilla
2.1 NOMENCLATURA DE LOS
DESLIZAMIENTOS.
Debido a que un deslizamiento involucra una
masa de suelo o roca moviéndose ladera
abajo, este puede ser descrito con base en
las diferencias entre la masa que forma el
deslizamiento y la ladera que no ha fallado.
La ladera que no ha fallado se puede definir
como la superficie original de terreno. Esta
es, a su vez, la superficie que existía antes
de que el movimiento se diera (Fig. 2.1). Si
esta es la superficie de un deslizamiento
antiguo, el hecho debe resaltarse, pues se
trata de una reactivación del deslizamiento.
Fig. 2.1 Deslizamiento Quebradas, Santa
Ana, Costa Rica, se aprecia la superficie
original del terreno (Foto R. Mora).
La masa que se ha movido se conoce como
el material desplazado, es decir, es el
material que se ha movido de su posición
original en la ladera. El mismo pude
encontrarse en un estado deformado o no
deformado (Fig. 2.2).
El material desplazado sobreyace dos
sectores distintos. El sector de pérdida es el
área dentro de la cual el material desplazado
descansa bajo la superficie original del
terreno y está definido por la superficie de
ruptura (Fig. 2.3). En el caso de que no
quede material sobre la superficie de ruptura
o donde ha ocurrido flujo en vez de ruptura,
es más conveniente utilizar el término área
fuente. El sector de acumulación es el área
donde el material desplazado descansa
sobre la superficie del terreno (Fig. 2.3). Este
sector es definido por la superficie de
separación subyacente, la cual separa el
material desplazado del material estable, en
el cual no se ha desarrollado ruptura alguna.
En algunas ocasiones es mejor llamar a este
sector área de depositación.
Fig. 2.2 Material desplazado en estado
deformado, deslizamiento Tapezco, Santa
Ana, Costa Rica (Foto R. Mora).
Fig. 2.3 Nomenclatura de un deslizamiento
(Varnes, 1978)
2.2 PARTES DE UN DESLIZAMIENTO.
Corona: sector de la ladera que no ha fallado
y localizada arriba del deslizamiento. Puede
presentar grietas, llamadas grietas de la
corona.
Escarpe principal: superficie de pendiente
muy fuerte, localizada en el límite del
deslizamiento y originada por el material
desplazado de la ladera. Si este escarpe se
proyecta bajo el material desplazado, se
obtiene la superficie de ruptura.
Escarpe menor: superficie de pendiente muy
fuerte en el material desplazado y producida
por el movimiento diferencial dentro de este
material.
Superficie original
del terreno
Material
desplazado
Sector de
pérdida
Superficie de ruptura
Sector de
acumulaci
Punta de la superficie de ruptura: la
intersección (algunas veces cubierta) de la
parte baja de la superficie de ruptura y la
superficie original del terreno.
Cabeza: la parte superior del material
desplazado a lo largo de su contacto con el
escarpe principal.
Tope: el punto más alto de contacto entre el
material desplazado y el escarpe principal.
Cuerpo principal: la parte del material
desplazado que sobreyace la superficie de
ruptura localizada entre el escarpe principal y
la punta de la superficie de ruptura.
Flanco: lado del deslizamiento
Pie: la porción de material desplazado que
descansa ladera abajo desde la punta de la
superficie de ruptura
Dedo: el margen del material desplazado
más distante del escarpe principal.
Punta: el punto en el pie más distante del
tope del deslizamiento.
Fig. 2.4 Partes de un deslizamiento
(Varnes, 1978).
2.3 OTRAS CARACTERÍSTICAS DE UN
DESLIZAMIENTO.
Algunas veces se torna necesario describir el
crecimiento de un deslizamiento. Se sugieren
algunos términos en función de cómo la
ruptura se propaga en relación con la
dirección de movimiento.
Ruptura retrogresiva: ampliación del
deslizamiento en la dirección opuesta a su
movimiento.
Ruptura en avance: ampliación del
deslizamiento en la dirección del movimiento.
Donde la ampliación se da en ambas
direcciones, se utiliza el término progresivo.
Movimiento simple: movimiento rotacional o
translacional de una masa individual a lo
largo de una superficie de ruptura particular
(Fig. 2.5).
Fig. 2.5 Movimiento simple (Hutchinson,
1968).
Movimiento múltiple: una o más masas con el
mismo tipo de movimiento a lo largo de dos o
más superficies de ruptura distintas (Fig. 2.6).
Fig. 2.6 Movimiento múltiple (Hutchinson,
1968).
Si un movimiento múltiple se desarrolla a lo
largo de un período de tiempo, se utiliza el
término movimiento sucesivo (Fig. 2.7).
Fig. 2.7 Movimiento sucesivo (Hutchinson,
1968).
2.4 TÉRMINOS RELACIONADOS CON EL
CONTENIDO DE HUMEDAD.
Seco: no hay humedad visible
Coro
naEscarpe
principalEscarp
e
Punta de la
superficie de ruptura
Cabeza
Tope
Cuerpo
principal
Flanco
Pie
Dedo
Punta
Húmedo: contiene algo de agua pero no en
estado libre, se comporta como un sólido
plástico y no como un fluido.
Mojado: contiene suficiente agua para
comportarse como un fluido, el agua fluye del
material o forma depósitos significativos
(charcas, lagunas).
Muy mojado: contiene suficiente agua para
fluir como un líquido viscoso en pendientes
bajas.
2.5 TÉRMINOS RELACIONADOS CON LA
VELOCIDAD DE MOVIMIENTO.
La velocidad de movimiento de los
deslizamientos varía desde extremadamente
lenta (menos de 0.06 m/año) a
extremadamente rápida (3 m/s).
2.6 REFERENCIAS BIBLIOGRAFICAS.
Hutchinson, J.N., 1968: Mass Movement. In
The Enciclopedia of Geomorphology
(Fairbridge, R.W., ed., Reinhold Book Corp.,
New York, pp. 688-696.
Varnes, D.J., 1978: Slope Movement: Types
and Proceses. In Scuster & Krizek, 1978:
Landslides: Analysis and Control. Special
report 176. Transportation Research Board,
Comisión on Sociotechnical Systems,
National Research Council. National
Academy of Sciences, Washungton, D.C. 234
p.p.
3. CLASIFICACIÓN DE LOS
DESLIZAMIENTOS.
M. Sc. Rolando Mora Chinchilla
Los deslizamientos son clasificados con base
en diferentes características de acuerdo a
varios esquemas de clasificación. Los
esquemas varían de acuerdo con el propósito
de la clasificación.
La aplicación de los términos de una
clasificación aceptada, facilita la
comunicación y contribuye al desarrollo de
generalizaciones válidas sobre la ocurrencia
de los diferentes tipos de deslizamientos.
Algunos investigadores cuestionan la utilidad
de los esquemas de clasificación, debido a
las variaciones entre deslizamientos
individuales o a la falta de cuantificación a la
hora de definir subcategorías discretas.
Una de las clasificaciones más comúnmente
utilizadas es la de Varnes (1978) (Cuadro
3.1), la cual utiliza el tipo de movimiento y la
naturaleza del material. Posteriormente, la
geometría, el movimiento y otras
características son empleadas para definir
subcategorías discretas.
Cuadro 3.1:Clasificación de los deslizamientos (Varnes, 1978).
Tipo de material
SueloTipo de movimiento
Roca
De grano grueso De grano fino
Caídas Caídas de rocas Caídas de detritos Caídas de suelos
Basculamientos
Basculamiento de
rocas
Basculamiento de
detritos
Basculamiento de
suelos
Rotacionales
Deslizamiento
rotacional de
rocas
Deslizamiento
rotacional de
detritos
Deslizamiento
rotacional de
suelos
Deslizamientos
Translacionales
Deslizamiento
translacional de
rocas
Deslizamiento
translacional de
detritos
Deslizamiento
translacional de
suelos
Separaciones laterales
Separación lateral
en roca
Separación lateral
en detritos
Separación lateral
en suelos
Flujos Flujo de rocas Flujo de detritos Flujo de suelos
Complejos Combinación de dos o más tipos
3.1 CAÍDAS.
Todas las caídas se inician con un
desprendimiento de suelo o roca de una
ladera muy empinada, a lo largo de una
superficie en la que poco o ningún
desplazamiento cortante se desarrolla
(Cruden & Varnes, 1996) (Fig. 3.1). El
material desciende en caída libre, saltando o
rodando, el movimiento es de muy rápido a
extremadamente rápido (Cruden & Varnes,
1996) (Fig. 3.1).
Solo cuando la masa desplazada es
socavada, las caídas son precedidas por
pequeños deslizamientos o movimientos de
basculamiento que separan el material de la
masa no perturbada (Cruden & Varnes,
1996). Socavamiento ocurre típicamente en
suelos cohesivos o rocas al pie de escarpes
que sufren el ataque de las olas o debido a la
erosión de márgenes de ríos.
Fig. 3.1 Caída de rocas (Varnes, 1978)
3.2 BASCULAMIENTOS.
Un basculamiento es la rotación hacia
adelante (afuera) de una masa de suelo o
roca, alrededor de un punto o eje bajo el
centro de gravedad de la masa desplazada
(Cruden & Varnes, 1996) (Figs. 3.2 , 3.3 y
3.4).
Fig. 3.2 Basculamiento de columnas de
roca (Cruden & Varnes, 1996)
Fig. 3.3 Basculamiento de detritos
(Varnes, 1978).
El basculamiento algunas veces es causado
por el empuje del material localizado ladera
arriba y otras veces por el agua presente en
las grietas del macizo (Cruden & Varnes,
1996).
Los basculamientos producen caídas o
deslizamientos del material desplazado,
dependiendo de la geometría del material en
movimiento, la geometría de la superficie de
separación y la orientación y extensión de las
discontinuidades cinemáticamente activas
(Cruden & Varnes, 1996). Los
basculamientos varían de extremadamente
lentos a extremadamente rápidos, algunas
veces acelerando con el avance del
movimiento (Cruden & Varnes, 1996).
Fig. 3.4 Basculamiento de detritos,
embalse Cachí, Costa Rica (Foto R. Mora).
3.3 DESLIZAMIENTOS.
Un deslizamiento es un movimiento ladera
abajo de una masa de suelos o rocas, que
ocurre predominantemente a lo largo de una
superficie de ruptura o zonas relativamente
delgadas de intensa deformación cortante
(Cruden & Varnes, 1996).
Inicialmente, el movimiento no ocurre
simultáneamente a lo largo de lo que,
eventualmente, será la superficie de ruptura;
el volumen de material desplazado se
incrementa a partir de un área de falla local
(Cruden & Varnes, 1996).
Muchas veces, los primeros signos de
movimiento son grietas en la superficie
original del terreno, a lo largo de lo que más
tarde será el escarpe principal del
deslizamiento (Cruden & Varnes, 1996).
El material desplazado puede deslizarse más
allá de la punta de la superficie de ruptura,
cubriendo la superficie original del terreno, la
cual, a su vez, se convierte en superficie de
separación (Cruden & Varnes, 1996).
3.3.1 Deslizamientos rotacionales.
Estos deslizamientos se mueven a lo largo
de superficies de ruptura curvas y cóncavas,
con poca deformación interna del material
(Cruden & Varnes, 1996). La cabeza del
material desplazado se mueve verticalmente
hacia abajo, mientras que la parte superior
del material desplazado se bascula hacia el
escarpe (Cruden & Varnes, 1996) (Fig. 3.5).
Fig. 3.5 Deslizamiento rotacional (Skinner
& Porter, 1992)
El escarpe principal es prácticamente vertical
y carente de soporte, por lo que se pueden
esperar movimientos posteriores que causen
retrogresión del deslizamiento a la altura de
la corona (Cruden & Varnes, 1996) (Fig.3.6).
Fig. 3.6 Escarpe principal, deslizamiento
Tapezco, Costa Rica (Foto R. Mora).
Ocasionalmente, los márgenes laterales de la
superficie de ruptura pueden ser los
suficientemente altos y empinados, como
para producir deslizamientos hacia la zona
de pérdida (Cruden & Varnes, 1996) (Fig.
3.7).
Fig. 3.7 Margen lateral con deslizamientos
hacia la zona de pérdida, deslizamiento
Tapezco, Costa Rica (Foto R. Mora).
El agua de escorrentía o un nivel freático
somero pueden causar el desarrollo de
lagunas en las secciones basculadas de
mat erial desplazado, lo que a su vez,
mantiene el material saturado y perpetúa el
movimiento hasta que se desarrolle una
pendiente suficientemente baja (Cruden &
Varnes, 1996).
3.3.2 Deslizamientos translacionales.
La masa se desplaza a lo largo de una
superficie de ruptura plana o suavemente
ondulada y superponiéndose a la superficie
original del terreno (Cruden & Varnes, 1996)
(Fig. 3.8).
Fig. 3.8 Deslizamiento translacional de
detritos (Skinner & Porter, 1992).
La superficie de ruptura usualmente se
orienta a lo largo de discontinuidades como
fallas, juntas, planos de estratificación o el
contacto entre roca y suelos residuales o
transportados (Cruden & Varnes, 1996) (Figs.
3.8 y 3.9).
Fig. 3.9 Deslizamiento translacional a lo
largo de planos de estratificación (Skinner
& Porter, 1992).
En los deslizamientos translacionales la
masa desplazada puede también fluir,
convirtiéndose en un flujo de detritos ladera
abajo (Cruden & Varnes, 1996) (Fig. 3.10).
3.4 SEPARACIONES LATERALES.
La separación lateral se define como una
extensión de una masa cohesiva de suelo o
roca, combinada con la subsidencia del
material fracturado en un material
subyacente más blando (Cruden & Varnes,
1996) (Figs. 3.11 y 3.12).
Fig. 3.11 Separación lateral en roca
(Varnes, 1978).
La superficie de ruptura no es una superficie
de corte intenso y el proceso es el producto
de la licuefacción o flujo (extrusión) del
material más blando (Cruden & Varnes,
1996) (Fig. 3.13).
Claramente estos movimientos son
complejos, pero debido a que son muy
comunes en ciertos materiales y situaciones
geológicas, es mejor reconocerlos como un
tipo separado de movimiento (Cruden &
Varnes, 1996).
Fig. 3.12 Separación lateral en suelo
(Varnes, 1978).
Fig. 3.13 Separación lateral por
licuefacción durante el terremoto de
Limón, Costa Rica (1991), carretera
Limón-Cahuita (Foto R. Mora).
3.5 FLUJOS.
Un flujo es un movimiento espacialmente
continuo, en el que las superficies de corte
son de corta duración, de espaciamiento
corto y usualmente no se preservan; la
distribución de velocidades en la masa que
se desplaza se compara con la de un fluido
viscoso (Cruden & Varnes, 1996) (Fig. 3.14).
Fig. 3.14 Flujo de detritos (Skinner &
Porter, 1992).
El límite inferior de la masa desplazada
puede ser una superficie, a lo largo de la cual
se desarrolla un movimiento diferencial
apreciable o una zona gruesa de corte
distribuido (Cruden & Varnes, 1996).
Es decir, existe una gradación desde
deslizamientos a flujos, dependiendo del
contenido de humedad, la movilidad y la
evolución del movimiento (Cruden & Varnes,
1996).
Los deslizamientos de detritos pueden
convertirse en flujos de detritos
extremadamente rápidos o avalanchas de
detritos, en la medida en que el material
desplazado pierde cohesión, aumenta de
contenido de humedad o encuentra
pendientes más fuertes (Cruden & Varnes,
1996) (Figs. 3.15, 3.16 y 3.17).
Fig. 3.15 Flujo de lodo (Skinner & Porter,
1992).
Fig. 3.16 Flujo de detritos, Arancibia,
Costa Rica (Foto R. Mora).
Fig. 3.17 Avalancha de detritos (Skinner &
Porter, 1992).
3.6 REFERENCIAS BIBLIOGRAFICAS.
Cruden, D.M. & Varnes, D.J., 1996: Landslide
Types and Processes. In Turner, A.K. &
Schuster, R.L., 1996: Landslides:
Investigation and Mitigation. Special Report
247. Transportation Research Board,
National Research Council. National
Academy Press, Washington, D.C. 675 p.p.
Skinner, B.J. & Porter, S.C., 1992: The
Dynamic Earth: an introduction to physical
geology. II edition, John Wiley & Sins, Inc.
New York. 570 p.p.
Varnes, D.J., 1978: Slope Movement: Types
and Proceses. In Scuster & Krizek, 1978:
Landslides: Analysis and Control. Special
report 176. Transportation Research Board,
Comisión on Sociotechnical Systems,
National Research Council. National
Academy of Sciences, Washungton, D.C. 234
p.p.
DESLIZAMIENTO BAJO GAMBOA,
COSTA RICA: LA POSIBILIDAD DE
UNA ESTABILIZACIÓN RENTABLE.
M. Sc. Rolando Mora Ch.
Escuela Centroamericana de Geología
Universidad de Costa Rica
E-mail: rmorach@geologia.ucr.ac.cr
INTRODUCCIÓN.
Este trabajo involucra el estudio de las
propiedades físicas y mecánicas de un
macizo rocoso, en el cual se ha desarrollado
un deslizamiento circular en roca, disparado
por un laboreo errado de la ladera, con el fin
de explotarla como cantera de materiales. Se
ha realizado el análisis de la estabilidad de la
ladera natural, así como el diseño de un talud
seguro, basado en el movimiento estratégico
de tierras y el manejo de las aguas
subterráneas.
El sitio se localiza en el lugar conocido como
Bajo Gamboa, a 4 km al noroeste de San
Pablo de León Cortés, Distrito San Andrés,
Cantón de León Cortés, Provincia de San
José, entre las coordenadas Lambert Costa
Rica Norte (187000-188000)N y (528000-
530000)E (Fig. 1).
Para el estudio de estabilidad se ha realizado
una evaluación de campo del macizo rocoso,
mediante la aplicación del método Rock
Mass Rating (RMR) (Bieniawski, 1989), así
como, ensayos de laboratorio para la
determinación de las propiedades físicas.
Nicaragua
Panamá
COSTA RICA
Mar Caribe
Océano Pacífico
SAN JOSÉ
0 50 100 150 200
kilómetros
San Pablo
de León Cortés
189000
185000
529000
533000
Sitio de estudio
Fig. 1 Localización del sitio de estudio.
El factor de seguridad se ha calculado para
ruptura por las discontinuidades del macizo
rocoso y por falla circular. Este último tipo de
ruptura se ha considerado ya que se trata de
un macizo intensamente fracturado, en
donde la superficie de ruptura puede ser
definida por las discontinuidades, con la
tendencia a seguir una trayectoria circular
(Hoeck & Bray, 1981).
MARCO GEOLÓGICO.
Según Denyer y Arias (1991) el área de
estudio se encuentra comprendida en la
Formación Grifo Alto, la cual es una serie de
rocas volcánicas andesíticas y piroclásticas,
en las que se incluyen los depósitos
ignimbríticos que afloran al este de la hoja
topográfica Caraigres.
En la figura 2 se aprecia la presencia de
fallas geológicas importantes, como la falla
Jaris y la falla de desplazamiento de rumbo
que se localiza adyacente al área de estudio
y que es la responsable del fracturamiento
intenso que muestran las rocas silisificadas
del sitio.
Tm-bvc
Tm-pn
Tm-p
Tm-ca
Qal
Sitio de estudio
Fig. 2 Geología del área de estudio
(modificado de Arias & Denyer, 1990)
PROPIEDADES FÍSICAS, MECÁNICAS, Y
CLASIFICACIÓN DEL MACIZO ROCOSO.
Los resultados de las mediciones de las
propiedades físicas y mecánicas del material
que compone el macizo rocoso, se resumen
en el cuadro 1. La resistencia a la
compresión inconfinada indica que la roca
intacta posee una resistencia alta, según la
clasificación de Bieniawski (1989). Por otro
lado, el Índice de Calidad de la Roca (RQD)
es característico de macizos rocosos de
calidad muy pobre, según Bieniawski (1989).
Utilizando la información del cuadro 1, se
obtiene que el macizo rocoso es de calidad
muy pobre (V), su cohesión es menor de 100
kPa y su ángulo de fricción interna es menor
de 15º, de acuerdo con la clasificación
geomecánica de macizos rocosos RMR
(Bieniawski, 1989). El criterio de ruptura
empírico para macizos rocosos intensamente
fracturados de Hoeck y Brown (1981) se ha
utilizado para definir los parámetros de
resistencia al corte del material. En la figura
3 se observa la relación entre el esfuerzo de
ruptura axial (esfuerzo principal mayor) y la
presión de confinamiento (esfuerzo principal
menor) para el macizo rocoso intensamente
fracturado del Bajo Gamboa, en esta figura la
relación con la constante adimensional
m=0.017 es la que se considera válida, la
otra relación se ha incluido para efecto de
comparación. En la figura 4 se observa la
envolvente de Mohr para el mismo macizo
rocoso, aquí la envolvente considerada como
válida es la de constante igual a 0.03562, la
restante se ha incluído con fines de
comparación.
El macizo rocoso presenta cuatro sistemas
de discontinuidades, con espaciamientos
muy cortos y orientados desfavorablemente,
lo cual lo torna sumamente susceptible a
presentar fenómenos de deslizamiento.
Cualquier corte vertical en este macizo
producirá problemas de estabilidad, debido a
la orientación (a favor de la pendiente) y
ángulo de buzamiento (58º) de uno de sus
sistemas de discontinuidades.
Cuadro 1: Propiedades físicas y
mecánicas para la clasificación del macizo
rocoso, deslizamiento Bajo Gamboa,
Costa Rica.
Resistencia a la
compresión
inconfinada
103 MPa
RQD 20%
Espaciamiento
mínimo de
discontinuidades
20 mm
Condición de las
discontinuidades
Superficies poco ásperas,
separación menor a 1 mm,
paredes muy meteorizadas
Condiciones
generales del agua
subterránea
Completamente seca
Orientación de la
dirección
estratigráfica y
buzamiento de las
discontinuidades
Desfavorable
Peso unitario de la
roca
26.5 kN/m3
Cohesión del macizo
rocoso
< 100 kPa
Ángulo de fricción
del macizo rocoso
< 15º
0
5
10
15
20
Esfuerzoaxial[MPa]
0 2 4 6 8 10 12 14
Esfuerzo confinante [MPa]
Fig. 3 Criterio de ruptura empírico
Macizo Rocoso Bajo Gamboa
0,0
1,0
2,0
3,0
4,0
5,0
6,0
Esfuerzocortante[MPa]
0,0 1,0 2,0 3,0 4,0 5,0 6,0
Esfuerzo normal [MPa]
Fig. 4 Envolvente de Mohr
Macizo Rocoso Bajo Gamboa
ANÁLISIS DE ESTABILIDAD DE LA
LADERA NATURAL.
Para la ejecución del análisis de estabilidad
de la ladera natural se ha utilizado la base
topográfica presentada por Estrada (1993).
Se ha seleccionado un perfil topográfico
perpendicular a la orientación de las
discontinuidades más desfavorables y a las
curvas de nivel del terreno. Debido a que no
se conoce con certeza la ubicación de la
superficie freática, se ha realizado el análisis
considerando la condición de flujo de agua
subterránea número 1 de Hoeck y Bray
(1981), es decir una ladera natural
completamente drenada.
Bajo esta condición el factor de seguridad de
la ladera natural, según el método de
análisis, se puede observar en el cuadro 2 y
la figura 5. Los tres factores de seguridad se
encuentran muy cercanos a la unidad, lo cual
indica que la ladera se encuentra en una
condición precaria de estabilidad, esto
considerando la ladera como completamente
drenada. Si se considera otra situación para
el agua subterránea, con certeza los factores
de seguridad pueden alcanzar valores
incluso inferiores a la unidad.
Cuadro 2: Factores de seguridad de la
ladera natural según el método de
análisis.
Método de análisis Factor de
sefuridad
Ordinario o de Fellenius 1.033
Simplificado de Bishop 1.096
Simplificado de Jambu 1.016
Ordinario o de Fellenius: se desprecian
las fuerzas entre dovelas
Simplificado de Bishop: las fuerzas
resultantes entre dovelas son
horizontales. No se consideran las fuerzas
de corte entre dovelas
Simplificado de Jambu: las fuerzas
resultantes entre dovelas son
horizontales. Se utiliza un factor de
corrección empírico para considerar las
fuerzas de corte entre dovelas
Fig. 5 Análisis de estabilidad de la ladera
natural, utilizando los métodos: Ordinario
o de Fellenius, Simplificado de Bishop y
Simplificado de Jambu. Escala vertical y
horizontal: 1:2000. Perfi: N57ºE
1.096
1.016
1 . 0 3 3
Durante el trabajo de campo se encontraron
evidencias de que la ladera se encuentra en
un proceso de desestabilización acelerado,
esto debido a la tala de la vegetación y a la
extración de materiales utilizando cortes
verticales. Se observan grietas y escarpes de
0.5 a 1.0 m de altura y que establecen la
posibilidad de un deslizamiento de grandes
proporciones, el cual puede involucrar las
propiedades vecinas y poner en peligro las
tomas del acueducto de la comunidad de San
Antonio.
ESTABILIZACIÓN DE LA LADERA
MEDIANTE EXPLOTACIÓN DEL
MATERIAL Y MANEJO DEL AGUA
SUBTERRANEA.
El talud propuesto por Estrada (1993) para la
exlotación del material ha sido analizado,
considerando rupturas por las diaclasas y por
falla general. Este talud es de 10 m de altura,
con un ángulo de inclinación de 60º y bermas
de 20 m de ancho. Esta configuración es
estable por sí sola, pues el factor de
seguridad calculado para rupturas por las
diaclasas es de 2.356 y para ruptura general
de 2.444 (Fig. 6). Por otra parte, si se
considera el empleo de esta configuración
para toda la ladera, se puede producir una
falla generalizada del talud, pues el factor de
seguridad sería inferior a 1.0.
Perfil: N57ºE. Factor de seguridad mínimo:
2.444 (Simplificado de Bishop)
Fig. 6 Estabilidad del talud propuesto para
explotación por Estrada (1993).
Se han realizado varios diseños para tratar
de elevar el factor de seguridad,
considerando la remoción de material y el
drenaje del agua subterránea. El diseño que
presenta características aceptables desde el
punto de vista de su estabilidad es el de la
figura 7, donde se ha tomado en cuenta que
se trata de un talud para la explotación de
materiales en una cantera y no representa
una amenaza alta desde el punto de vista de
pérdida de vidas y pérdidas económicas. El
factor de seguridad es de 1.20, considerando
que el agua subterránea se debe mantener,
al menos, en la posición sugerida por el autor
(Fig. 7).
Factor de seguridad mínimo: 1.20
Método: Simplificado de Jambu
Distancia horizontal [m]
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420
Distanciavertical[m](x1000)
1.74
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89
1.90
1.91
1.92
1.93
Fig. 7 Perfil (N57ºE ) de estabilización
propuesto
23
24
Para ejecutar esta obra de estabilización se
debe considerar que los trabajos involucran,
al menos, una distancia de 50 m en la
propiedad colindante al suroeste y el estudio
de las condiciones del agua subterránea para
el diseño de las obras de drenaje apropiadas.
Dentro de las posibles soluciones para el
drenaje se pueden contemplar las galerías de
infiltración, los drenajes subhorizontales y los
pozos.
BENEFICIOS DEL PROCESO DE
ESTABILIZACIÓN DE LA LADERA.
La estabilización de la ladera estudiada
evitaría que el proceso involucre más área,
en los alrededores del sitio y además, se
eliminaría la amenaza de destrucción de las
tomas del acueducto de la comunidad de San
Antonio. Por otro lado, si se considera la
resistencia a la compresión inconfinada del
material (104 MPa) y que el mismo se
encuentra intensamente fracturado, se habre
la posibilidad para que sea utilizado como
material de construcción, o como agregado
de concreto y asfalto.
La modificación del perfil de la ladera
involucra un área de 5300 m
2
por metro
lineal. Si se considera que el tramo por
estabilizar tiene 250 m de largo, entoces se
puede hablar de un volumen explotable
aproximado de 1325000 m
3
. Ahora bien, si el
precio del material en banco se considera
como de ¢ 300 por metro cúbico, quiere decir
que se cuenta potencialmente con ¢ 397.5
millones para ser extraídos.
CONCLUSIONES.
La falla de desplazamiento de rumbo, que se
localiza adyacente al área de estudio, es la
responsable del fracturamiento intenso que
muestran las rocas silisificadas del sitio.
La resistencia a la compresión inconfinada
indica que la roca intacta posee una
resistencia alta, mientras que el Índice de
Calidad de la Roca (RQD) es característico
de macizos rocosos de calidad muy pobre.
Lo anterior conduce a considerar que la
cohesión del macizo es menor de 100 kPa y
su ángulo de fricción interna es menor de
15
El macizo rocoso presenta cuatro sistemas
de discontinuidades, con espaciamientos
muy cortos y orientados desfavorablemente,
lo cual lo torna sumamente susceptible a
presentar fenómenos de deslizamiento.
Cualquier corte vertical en este macizo
producirá problemas de estabilidad, debido a
la orientación (a favor de la pendiente) y
ángulo de buzamiento (58 ) de uno de sus
sistemas de discontinuidades.
El factor de seguridad de la ladera se
encuentra muy cercano a la unidad, lo cual
indica que la misma posee una condición
precaria de estabilidad, esto considerandola
ladera como completamente drenada. Si se
toma en cuenta otra situación para el agua
subterránea, con seguridad los factores de
seguridad pueden alcanzar valores incluso
inferiores a la unidad. Durante el trabajo de
campo se encontraron evidencias de que la
ladera se encuentra en un proceso de
desestabilización acelerado, esto debido a la
tala de la vegetación y a la extración de
materiales utilizando cortes verticales,
además se ha establecido la posibilidad de
un deslizamiento de grandes proporciones, el
cual puede involucrar las propiedades
vecinas y poner en peligro las tomas del
acueducto de la comunidad de San Antonio.
El factor de seguridad de la ladera
modificada es de 1.20, considerando que el
agua subterránea se debe mantener en la
posición sugerida por el autor. Para ejecutar
esta obra de estabilización se debe
considerar que los trabajos involucran, al
menos, una distancia de 50 m en la
propiedad colindante al suroeste y el estudio
de las condiciones del agua subterránea para
el diseño de las obras de drenaje apropiadas.
La estabilización de la ladera evitaría que el
proceso involucre más área, en los
alrededores del sitio y se eliminaría la
amenaza de destrucción de las tomas del
acueducto de la comunidad de San Antonio.
Por otro lado, se habre la posibilidad para
que el sitio sea utilizado como fuente de
materiales para la construcción, o de
agregados de concreto y asfalto.
Se puede decir que el volumen de material
explotable comprende aproximadamente
1325000 m
3
y si el precio del material en
banco se considera como de ¢ 300 por metro
cúbico, quiere decir que se cuenta
potencialmente con ¢ 397.5 millones para ser
extraídos. La suma anterior justifica
financieramente la ejecución de las obras de
estabilización.
BIBLIOGRAFIA.
Bieniawski, Z.T., 1989: Engineering Rock
Mass Classifications. John Wiley & Sons.
New York. 251 p.p.
Denyer, P. y Arias, O., 1991: Estratigrafía de
la región central de Costa Rica. Revista
Geológica de América Central, 12: 1-59 p.
Estrada, E., 1993: Programa inicial de
explotación, informe técnico-financiero.
Geología-Evaluación, Exp. 2327. Informe
inédito. 16 p.
Hoek, E. & Bray, J.W., 1981: Rock Slope
Engineering. The Institution of Mining and
Metallurgy. Revised third edition. London.
358 p.p.
ZONIFICACIÓN DE LA SUSCEPTIBILIDAD
AL DESLIZAMIENTO: RESULTADOS
OBTENIDOS PARA LA PENÍNSULA DE
PAPAGAYO MEDIANTE LA
MODIFICACIÓN DEL MÉTODO MORA-
VAHRSON (MORA, R. ET AL., 1992).
M. Sc. Rolando Mora Chinchilla
Geól. Jeisson Chaves Gamboa
Geól. Mauricio Vásquez Fernández
Sección Geotecnia e Hidrogeología
Escuela Centroamericana de Geología
Universidad de Costa Rica
E-mail: rmorach@geologia.ucr.ac.cr
1. INTRODUCCIÓN.
La metodología para la determinación “a
priori” de la amenaza de deslizamientos
Mora-Vahrson (Mora, R. et al., 1992) se ha
modificado con la inclusión del ángulo de la
pendiente del terreno, en sustitución del
índice de relieve relativo, y la consideración
de los parámetros de resistencia al corte de
suelos y la clasificación de macizos rocosos
de Bieniawski (1989) en el parámetro de
susceptibilidad litológica. También, se ha
considerado una clasificación más
simplificada del grado de amenaza, el cual se
propone se denomine Susceptibilidad al
Deslizamiento. De esta manera, la nueva
metodología para el estudio de la
susceptibilidad al deslizamiento se ha
denominado método Mora-Vahrson-Mora
(MVM).
Esta metodología permite obtener una
zonificación de la susceptibilidad del terreno
a deslizarse, mediante la combinación de la
valoración y peso relativo de diversos
indicadores morfodinámicos, la cual es
sencilla de implementar en un sistema de
información geográfica (SIG). Se pretende
dividir el área estudiada en sectores de
comportamiento similar y proveer una base
para entender las características de cada uno
de estos sectores.
La metodología es simple, fácilmente
recordada y entendible; cada uno de sus
factores es claro y la terminología
utilizada es ampliamente aceptada;
incluye los factores más significativos
desde el punto de vista de la inestabilidad
de laderas; se basa en parámetros que
pueden determinarse de manera rápida y
barata en el campo y en la oficina, así
como, en valoraciones que incluyen el
peso relativo de los parámetros.
Los mapas generados con esta metodología
se utilizan y aplican como instrumentos en la
toma de decisiones para los procesos de
planificación del uso del terreno, explotación
de recursos naturales y el desarrollo de
infraestructura, urbanismo y líneas vitales
(Mora, R. et al., 1992). El resultado de su
aplicación será una mejor comprensión de
los fenómenos naturales en el área de
estudio, lo cual incide en su desarrollo
eficiente y duradero (Mora, R. et al., 1992).
La metodología permite desarrollar una
aproximación del grado de susceptibilidad al
deslizamiento de la región estudiada y de los
fenómenos que influencian mayormente esta
condición (Mora, R. et al., 1992). Es valiosa
en la identificación de áreas críticas y útil en
la orientación de prioridades en cuanto al
destino de los recursos destinados hacia
estudios geotécnicos de detalle (Mora, R. et
al., 1992).
Bajo ninguna circunstancia, esta metodología
debe sustituir los estudios geotécnicos de
campo y laboratorio, necesarios para el
diseño y concepción de las obras civiles y
sus complementos de protección y mitigación
correspondientes (Mora, R. et al., 1992).
Adicionalmente, fuera de un concepto
general, la metodología tampoco es capaz de
pronosticar el tipo de deslizamiento que
podría presentarse.
2. FACTORES Y PARÁMETROS
UTILIZADOS POR LA
METODOLOGÍA MVM.
La metodología se aplica mediante la
combinación de varios factores y parámetros,
los cuales se obtienen de la observación y
medición de indicadores morfodinámicos y su
distribución espacio-temporal. En este trabajo
se utilizó una base topográfica 1:20000, con
una resolución de 100 m
2
, es decir un
tamaño de píxel de 10x10 m.
La combinación de los factores y parámetros
se realiza considerando que los
deslizamientos ocurren cuando en una
ladera, compuesta por una litología
determinada, con cierto grado de humedad y
con cierta pendiente, se alcanza un grado de
susceptibilidad (elementos pasivos) (Mora,
R., Vahrson, W. & Mora, S., 1992). Bajo
estas condiciones, los factores externos y
dinámicos, como son la sismicidad y las
lluvias intensas (elementos activos), actúan
como factores de disparo que perturban el
equilibrio, la mayoría de las veces precario,
que se mantiene en la ladera (Mora, R. et al.,
1992).
Es así como se considera que el grado de
susceptibilidad al deslizamiento es el
producto de los elementos pasivos y de la
acción de los factores de disparo (Mora, R. et
al., 1992):
H = EP * D
donde:
H: grado de susceptibilidad al deslizamiento,
EP: valor producto de la combinación de los
elementos pasivos, y
D: valor del factor de disparo.
Por su parte el valor de los elementos
pasivos se compone de los siguientes
parámetros (Mora, R. et al., 1992):
EP = Sl * Sh * Sp
donde:
Sl : valor del parámetro de susceptibilidad
litológica,
Sh : valor del parámetro de humedad del
terreno, y
Sp : valor del parámetro de la pendiente.
El factor de disparo se compone de los
siguientes parámetros (Mora, R. et al., 1992):
D = Ds + Dll
donde:
Ds : valor del parámetro de disparo por
sismicidad, y
Dll : valor del parámetro de disparo por lluvia.
Sustituyendo los parámetros apropiados, la
ecuación original se puede expresar como
(Mora, R. et al., 1992):
H = (Sl * Sh * Sp) * (Ds + Dll)
De esta ecuación se pueden derivar las
relaciones (Mora, R. et al., 1992):
Hs = (Sl * Sh * Sp) * (Ds)
Hll = (Sl * Sh * Sp) * (Dll)
donde:
Hs : susceptibilidad al deslizamiento por
sismicidad, y
Hll : susceptibilidad al deslizamiento por
lluvias.
Para los resultados de la combinación de
todos los factores no se puede establecer
una escala de valores única, pues los
mismos dependen de las condiciones de
cada área estudiada. Por este motivo, se
sugiere dividir el rango de valores obtenidos,
para el área de estudio, en cinco clases de
susceptibilidad y asignar los calificativos que
se presentan en el cuadro 1. El calificativo de
susceptibilidad es una representación
cuantitativa de los diferentes niveles de
amenaza, que muestra solamente el rango
de amenaza relativa en un sitio en particular
y no la amenaza absoluta. Se sugiere que la
asignación de rangos se efectúe con la
utilización de un histograma de los resultados
de la combinación de parámetros.
Cuadro 1: Clasificación de la
susceptibilidad al deslizamiento.
Clase
Calificativo de
susceptibilidad al
deslizamiento
Característica
I Muy baja
Sectores estables, no se
requieren medidas correctivas.
Se debe considerar la influencia
de los sectores aledaños con
susceptibilidad de moderada a
muy alta.
II Baja
Sectores estables que requieren
medidas correctivas menores,
solamente en casos especiales.
Se debe considerar la influencia
de los sectores aledaños con
susceptibilidad de moderada a
muy alta.
III Moderada
No se debe permitir la
construcción de infraestructura si
no se mejora la condición del
sitio
IV Alta
Probabilidad de deslizamiento
alta en caso de sismos de
magnitud importante y lluvias de
intensidad alta. Se deben
realizar estudios de detalle y
medidas correctivas que
aseguren la estabilidad del
sector, en caso contrario, deben
mantenerse como áreas de
protección.
V Muy alta
Probabilidad de deslizamiento
muy alta en caso de sismos de
magnitud importante y lluvias de
intensidad alta. Se deben
realizar estudios de detalle y
medidas correctivas que
aseguren la estabilidad del
sector, en caso contrario, deben
mantenerse como áreas de
protección.
Se debe enfatizar en que esta clasificación
relativa de la susceptibilidad, se basa en
influencia que tienen las diferentes
condiciones examinadas en un área
específica; es decir, las áreas de
susceptibilidad determinadas para un sitio
son válidas únicamente para este sitio.
Condiciones similares, encontradas fuera del
sitio, pueden producir un resultado diferente
por una pequeña diferencia en alguno de los
factores.
3. DESCRIPCIÓN DE LOS
PARÁMETROS DE LA
METODOLOGÍA MVM.
3.1 PARÁMETRO DE LA PENDIENTE
(Sp).
Este parámetro utiliza las clases de
pendiente de van Zuidam (1986), con las
cuales se describen los procesos
característicos y esperados, y las
condiciones del terreno, así como una
leyenda de colores sugerida por el mismo
autor (Cuadro 2). Las clases de pendientes
pueden coincidir con los sectores críticos,
donde los procesos de deslizamiento son
dominantes (van Zuidam, 1986).
3.2 PARÁMETRO DE
SUSCEPTIBILIDAD LITOLÓGICA
(Sl).
Los tipos de suelos y rocas juegan un papel
preponderante en el comportamiento
dinámico de las laderas (Mora, R. et al.,
1992).
Cuadro 2: Clases de pendientes,
condiciones del terreno, colores
sugeridos y valoración del parámetro Sp.
Clase de
pendiente
[º] [%]
Condiciones del
terreno
Color
Valor
de Sp
0-2 0-2
Planicie, sin
denudación
apreciable
Verde
oscuro
0
2-4 2-7
Pendiente muy
baja, peligro de
erosión
Verde
claro
1
4-8 7-15
Pendiente baja,
peligro severo de
erosión
Amarillo 2
8-16 15-30
Pendiente
moderada,
deslizamientos
ocasionales,
peligro de erosión
severo
Naranja 3
16-35 30-70
Pendiente fuerte,
procesos
denudacionales
intensos
(deslizamientos),
peligro extremo de
erosión de suelos
Rojo
claro
4
35-55 70-140
Pendiente muy
fuerte,
afloramientos
rocosos, procesos
denudacionales
intensos,
reforestación
posible
Rojo
oscuro
5
> 55 > 140
Extremadamente
fuerte,
afloramientos
rocosos, procesos
denudacionales
severos (caída de
rocas), cobertura
vegetal limitada
Morado 6
La composición mineralógica, la capacidad
de retención de humedad, los espesores y
grado de meteorización, el estado de
fracturamiento, el ángulo de buzamiento, la
posición y variación de los niveles freáticos,
etc., influyen claramente en la estabilidad o
inestabilidad de las laderas (Mora, R. et al.,
1992).
La evaluación de este parámetro puede
realizarse según las sugerencias de Mora, R.
et al., (1992), sin embargo, si se cuenta con
descripciones de los macizos rocosos y la
evaluación de propiedades geotécnicas de
suelos, se recomienda utilizar los cuadros 3 y
4.
El cuadro 3 se ha confeccionado con la
utilización de la clasificación de macizos
rocosos RMR (Bieniawski, 1989), y el cuadro
4 con la modificación del cuadro propuesto
por Miles & Keafer (2002).
Cuadro 3: Valoración del parámetro
susceptibilidad litológica, caso macizos
rocosos según RMR (Bieniawski, 1989).
Valoración
RMR
Número
de clase
RMR
Descripción
RMR
Valoración
del
parámetro
Sl
< 20 I Muy pobre 5
21-40 II Pobre 4
41-60 III Medio 3
61-80 IV Bueno 2
81-100 V Muy Bueno 1
Cuadro 4: Valoración del parámetro
susceptibilidad litológica, caso suelos
Ángulo de
fricción
efectiva
Cohesión
efectiva
[kPa]
Descripción
Valoración
del
parámetro
S
[grados] Sl
0-15 0-10 Muy bajo 5
15-20 10-15 Bajo 4
20-25 15-20 Medio 3
25-30 20-25 Alto 2
> 30 > 25 Muy alto 1
3.3 PARÁMETRO DE HUMEDAD DEL
TERRENO (Sh).
En este caso se recurre a los promedios
mensuales de precipitación, efectuando con
ellos un balance hídrico simplificado, en
donde se asume una evapotranspiración
potencial de 125 mm/mes, por lo tanto,
precipitaciones mensuales inferiores a 125
mm no conducen a un aumento de la
humedad del terreno, mientras que una
precipitación entre 125 y 250 mm si la
incrementa, y precipitaciones mensuales
superiores a 250 mm conducen a una
humedad del suelo muy alta (Mora, R. et al.,
1992).
Seguidamente, a los promedios mensuales
se les asignan los valores del cuadro 5 y se
efectúa la suma de estos valores para los
doce meses del año, con lo que se obtiene
un valor que puede oscilar entre 0 y 24
unidades. El resultado refleja los aspectos
relacionados con la saturación y la
distribución temporal de humedad en el
terreno (Mora, R. et al., 1992). La valoración
del parámetro se presenta en el cuadro 6.
Cuadro 5: Valores asignados a los promedios
mensuales de lluvia (Mora, R. et al., 1992).
Promedio de
precipitación
mensual
[mm]
Valor
asignado
< 125 0
125-250 1
>250 2
Cuadro 6: Valoración del parámetro humedad
del terreno (Sh) (Mora, R. et al., 1992).
Suma de
valores
asignados a
cada mes
Descripción
Valoración
del
parámetro
Sh
0-4 Muy bajo 1
5-9 Bajo 2
10-14 Medio 3
15-19 Alto 4
20-24 Muy alto 5
3.4 PARÁMETRO DE DISPARO POR
SISMICIDAD Ds.
La sismicidad es el evento natural que ha
causado la mayor destrucción por
deslizamientos en Costa Rica (Mora, R. et
al., 1992). Se ha observado que el potencial
de generación de deslizamientos por
actividad sísmica puede correlacionarse con
la escala de intensidades Mercalli-Modificada
(Mora, R. et al., 1992).
En caso de contar con datos sobre
aceleraciones pico (PGA), se ha utilizado la
relación de Trifunac y Brady (1975), para
establecer los valores correspondientes del
parámetro de disparo por sismicidad (Ds)
(Cuadro 7). Existen otras relaciones entre
intensidad y aceleración que pueden ser
utilizadas, a criterio de las personas que
pongan en práctica esta metodología.
Cuadro 7: Valoración del parámetro de
disparo por sismicidad Ds.
Intensidad
Mercalli-
Modificada
Aceleración
pico (%g)
(Trifunac &
Brady, 1975)
Valoración
del
parámetro
Ds
I 0.3-0.6 1
II 0.6-1.1 2
III 1.1-2.2 3
IV 2.2-4.5 4
V 4.5-8.9 5
VI 8.9-17.7 6
VII 17.7-35.4 7
VIII 35.4-70.5 8
IX 7.5-140.8 9
X 140.8-280.8 10
XI 280.8-560.4 11
XII > 560.4 12
3.5 PARÁMETRO DE DISPARO POR
LLUVIA Dll.
En este parámetro se consideran las
intensidades de lluvias potencialmente
generadoras de deslizamientos, se utiliza la
lluvia máxima en 24 horas con un período de
retorno de 100 años, aplicando la distribución
de valores extremos Gumbel tipo I o
LogPearson tipo III a series temporales con
más de 10 años de registro (Mora, R. et al.,
1992). En el cuadro 8 se aprecia la
valoración del parámetro Dll.
Cuadro 8: Valoración del parámetro de
disparo por lluvias Dll (Mora, R. et al.,
1992).
Lluvia máxima
en 24 horas,
período de
retorno 100
años
[mm]
Descripción
Valor del
parámetro
Dll.
< 100 Muy bajo 1
100-200 Bajo 2
200-300 Medio 3
300-400 Alto 4
> 400 Muy alto 5
4. RESULTADOS PARA LA
PENÍNSULA DE PAPAGAYO.
El área de estudio comprende la Península
de Papagayo, en la Provincia de
Guanacaste, Costa Rica (Fig. 1).
La Península de Papagayo se caracteriza por
presentar una predominancia de pendientes
de fuertes a muy fuertes (51% del área),
según la clasificación de van Zuidam (1986),
las cuales se asocian con la forma del
terreno característica del lugar: los
acantilados costeros.
En un segundo plano aparecen las planicies
y pendientes muy bajas (26% del área),
asociadas a planicies ignimbríticas, sectores
de manglar y playas.
La figura 2 muestra la clasificación de
pendientes y su valoración de acuerdo con el
método MVM. En el cuadro 9 se aprecia el
porcentaje de área cubierta por cada clase
de pendiente.
Cuadro 9: Porcentaje de área por clase de
pendiente.
Clase de pendiente Área [km2
] % de área
Planicie 2.21 16.05
Pendiente muy baja 1.35 9.80
Pendiente baja 1.88 13.65
Pendientemedia 3.35 24.33
Pendiente fuerte 3.72 27.02
Pendiente muy fuerte 1.17 8.50
Pendiente
extremadamente fuerte
0.09 0.65
La Geología de la península se caracteriza
por la presencia de rocas ígneas y
sedimentarias, las cuales se han
correlacionado con formaciones previamente
descritas o se han descrito como unidades
informales. Cada unidad se ha clasificado de
acuerdo al RMR (Bieniawski, 1989) y se le ha
asignado su valoración de acuerdo con el
parámetro de susceptibilidad litológica (Fig. 3
y cuadro 10).
Cuadro 10: Clasificación y valoración de las
unidades litológicas.
Unidad geológica Litología RMR Sl
Depósitos
Recientes
Coluvios, aluviones,
arenas
-
Bajo
(4)
Unidad Papagayo Ignimbritas
Medio
(54)
Medio
(3)
Unidad Coyol
Areniscas, ignimbritas
conglomerados, tobas,
Medio
(41-60)
Medio
(3)
Unidad Nacascolo Ignimbritas
Medio
(55-60)
Medio
(3)
Unidad Iguanita Areniscas
Medio
(59)
Medio
(3)
Formación
Descartes
Calcilutitas
Pobre
(37)
Bajo
(4)
Intrusivos Gabros y plagiogranitos
Pobre
(21-40)
Bajo
(4)
Complejo de
Nicoya
Basaltos
Pobre
(35)
Bajo
(4)
En la península el desarrollo de suelos es
sumamente limitado, más bien, los
problemas de estabilidad están asociados a
deslizamientos en roca, por lo cual no se han
realizado estudios tendientes a determinar
parámetros de resistencia al corte de suelos.
El parámetro de humedad del terreno se ha
evaluado con los datos de la estación Playas
del Coco, la cual pertenece al Servicio
Nacional de Riego y Avenamiento
(SENARA). Esta estación cuenta con una
longitud de registro de 21 años y es la más
cercana a la Península de Papagayo. No se
han considerado datos de otras estaciones,
pues las mismas se encuentran bastante
alejadas y no presentan la influencia del
clima costero.
En el cuadro 11 se resume la información
correspondiente a los promedios mensuales
de la estación y los valores asignados a cada
mes. La clasificación final del parámetro de
humedad es de 6, lo cual indica una
influencia baja del mismo en lo que respecta
a la susceptibilidad al deslizamiento. Este
valor se tomará como constante para toda la
península, pues como se menciona
anteriormente, no se cuenta con datos de
estaciones más cercanas.
El parámetro de disparo por sismo se ha
evaluado considerando la intensidad (MM)
máxima reportada para la península, la cual
es de VIII y corresponde con un evento
sísmico de magnitud 7.5, ocurrido en 1916 y
localizado frente al Golfo de Papagayo
(Barquero, 1994). Por lo anterior, el factor de
disparo por sismo conduce a una valoración
del parámetro Ds de 8.
Cuadro 11: Valoración del parámetro
humedad del terreno (Sh)
Mes
Promedio
mensual
[mm]
Valor Asignado
ENERO 0 0
FEBRERO 0 0
MARZO 0.9 0
ABRIL 4.5 0
MAYO 163.4 1
JUNIO 246 1
JULIO 114.2 0
AGOSTO 160.9 1
SEPTIEMBRE 326.4 2
OCTUBRE 234.3 1
NOVIEMBRE 57.4 0
DICIEMBRE 8.2 0
Total: 6
Clasificación del
parámetro de
humedad: 2 (bajo)
Para evaluar el parámetro de disparo por
lluvia (Dll) se utilizaron los datos de la
estación Playas del Coco, tomando los
valores extremos anuales de lluvia en 24
horas y aproximando las distribuciones de
valores extremos LogPearson tipo III y
Gumbel tipo I (Linsley et al., 1986).
Los resultados son muy similares para las
dos distribuciones, 187.7 mm y 188.4 mm
respectivamente, con lo cual el parámetro Dll
se establece en 2, es decir, la influencia del
factor de disparo por lluvias es baja.
4.1. SUSCEPTIBILIDAD AL
DESLIZAMIENTO POR INFLUENCIA DE
LLUVIAS DE INTENSIDAD ALTA.
Los resultados de la aplicación de la
metodología MVM, en el caso de disparo por
lluvias de intensidad alta, se observan en la
figura 4.
En esta misma figura se aprecia el uso
recomendado del terreno, según el cuadro1,
considerando únicamente la susceptibilidad
al deslizamiento en caso de lluvias intensidad
alta, otros conceptos pueden y deben ser
incluidos para restringir el uso del terreno.
Bajo estas condiciones se puede decir que el
51% del área de la península puede
destinarse a desarrollo, el 25% a desarrollo
controlado (sujeto a la prevención de
deslizamientos) y el 24% a conservación.
4.2 SUSCEPTIBILIDAD AL
DESLIZAMIENTO POR ACTIVIDAD
SÍSMICA DE MAGNITUD IMPORTANTE.
Los resultados de la aplicación de la
metodología MVM, en el caso de disparo por
sismos, se observan en la figura 5.
En esta misma figura se aprecia el uso
recomendado del terreno, según el cuadro1,
considerando únicamente la susceptibilidad
al deslizamiento en caso de sismos de
magnitud importante, otros conceptos
pueden y deben ser incluidos para restringir
el uso del terreno.
Bajo estas condiciones se puede decir que el
51% del área de la península puede
destinarse a desarrollo, el 25% a desarrollo
controlado (sujeto a la prevención de
deslizamientos) y el 24% a conservación.
Es decir, no existe diferencia significativa
entre los resultados del análisis si se
considera la actividad sísmica o las lluvias
intensas, básicamente las áreas susceptibles
son las mismas para cada factor de disparo.
4.3 SUSCEPTIBILIDAD AL
DESLIZAMIENTO POR CONJUGACIÓN
DE SISMOS DE MAGNITUD
IMPORTANTE Y LLUVIAS DE
INTENSIDAD ALTA.
Los resultados de la aplicación de la
metodología MVM, en el caso de disparo por
lluvias de intensidad alta y sismos de
magnitud importante se observan en la figura
6.
En esta misma figura se aprecia el uso
recomendado del terreno, según el cuadro1,
considerando únicamente la susceptibilidad
al deslizamiento en caso de lluvias intensidad
alta conjugada con sismos de magnitud
importante, otros conceptos pueden y deben
ser incluidos para restringir el uso del terreno.
Bajo estas condiciones se puede decir que el
51% del área de la península puede
destinarse a desarrollo, el 25% a desarrollo
controlado (sujeto a la prevención de
deslizamientos) y el 24% a conservación.
Es decir, el resultado coincide plenamente
con los dos análisis realizados anteriormente,
lo cual confirma que los sectores se han
clasificado adecuadamente.
5. CONCLUSIONES.
Los resultados, obtenidos mediante la
aplicación de la metodología para determinar
la susceptibilidad de los terrenos a deslizarse
MVM, indican que un 25% del área se
clasifica como de susceptibilidad media y un
24% como de susceptibilidad de alta a muy
alta; el restante 51% se clasifica como de
susceptibilidad de baja a muy baja.
Como se confirma al aplicar tres factores de
disparo individualmente, los sectores de
diferente susceptibilidad coinciden para cada
uno de los análisis, con lo cual se verifica el
potencial generador de deslizamientos de
cada uno de ellos, el cual está regido,
principalmente, por la pendiente del terreno y
el tipo de litología presente, considerando los
factores de disparo como constantes para
toda el área de estudio.
El resultado de esta investigación debe ser
utilizado como una herramienta para el
diseño y ubicación de las diferentes obras de
infraestructura del proyecto, sin sustituir los
estudios geotécnicos de detalle,
principalmente en las áreas de
susceptibilidad de media a muy alta.
Debido a que la intensidad sísmica máxima
es de VIII (MM), la cual se debe a un
terremoto de magnitud 7.5 frente al Golfo de
Papagayo en 1916, se hace necesaria la
consideración del parámetro de aceleración
sísmica para el diseño de cualquier obra civil.
6. BIBLIOGRAFÍA
Barquero, R. & Rojas, W., 1994: Catálogo de
mapas de isosistas de temblores y
terremotos de Costa Rica. Red Sismológica
Nacional (ICE-UCR). San José, Costa Rica.
(Informe inédito)
Bieniawski, Z.T., 1989: Engineering Rock
Mass Classifications. John Wiley & Sins, New
York. 251 p.p.
Linsley, R.K., Kohler, M.A. & Paulhus, J.L.,
1986: Hidrología para Ingenieros. McGraw-
Hill, México. 386 p.p.
Miles, S.B. & Keafer, D.K., 2002: Seismic
landslide hazard for the city of Berkeley,
California. U.S. Department of The Interior,
U.S. Geological Survey. (Documento no
editable en Internet)
Mora, R., Vahrson, W. & Mora, S., 1992:
Mapa de Amenaza de Deslizamientos, Valle
Central, Costa Rica. Centro de Coordinación
para la Prevención de Desastres Naturales
en América Central (CEPREDENAC).
Trifunac, M.D. & Brady, A.G., 1975: On the
correlation of seismic intensity scales with the
peaks of the recorded ground motion. Bulletin
Seismological Society of America, vol. 65.
van Ziudam, R.A., 1986: Aerial photo-
interpretation in terrain analysis and
geomorphologic mapping. Smits Publishers,
The Hague. 442
ESTABILIDAD DE LAS MÁRGENES DE LA
QUEBRADA IPÍS A SU PASO POR LA
URBANIZACIÓN SETILLAL, IPÍS,
GOICOECHEA, COSTA RICA.
M. Sc Rolando Mora Ch.
Escuela Centroamericana de Geología
Universidad de Costa Rica
E-mail: rmorach@geologia.ucr.ac.cr
1. INTRODUCCIÓN.
La urbanización Setillal se ubica en la
margen derecha de la quebrada Ipís, en lugar
conocido como Setillal (Fig 1), el cual
pertenece al cantón de Guadalupe, provincia
de San José. Esta margen ha presentado
procesos de deslizamiento en algunos
sectores cercanos a las viviendas, motivo por
el cual la Asociación de Desarrollo Comunal
del lugar se ha preocupado por conocer el
origen y posibles consecuencia de estos
deslizamientos.
Fig. 1 Localización del sitio de estudio.
Este estudio comprende: la identificación de
los materiales geológicos que componen las
márgenes de la quebrada Ipís, la
determinación del espesor de estos
materiales mediante sondeos de penetración
dinámicos, su caracterización física y
mecánica, la implementación de un modelo
de estabilidad de taludes, utilizando un
sistema de información geográfica (SIG) y la
formulación de recomendaciones tendientes
a mitigar los efectos adversos del proceso de
deslizamiento.
Durante trabajo de campo, los ensayos de
laboratorio y la formulación de
recomendaciones se ha contado con la
colaboración de los estudiantes de Geología
Jasón Chávez y Mauricio Vázquez, y los
estudiantes de Ingeniería Civil Esteban Acón
y Luis Javier Villalobos. Estos estudiantes de
la Universidad de Costa Rica, han apoyado el
estudio mediante su participación en el
Proyecto de Acción Social de la Escuela
Centroamericana de Geología: Estabilidad de
Taludes en Obras de Interés Social.
También, se ha contado con el apoyo de la
Asociación de Desarrollo Comunal de la
localidad, la cual ha brindado un excelente
soporte logístico al equipo de trabajo.
2. GEOLOGÍA.
Según Denyer & Arias (1991) el sector de
Setillal está formado por lahares y cenizas,
provenientes de los edificios volcánicos de la
Cordillera Volcánica Central. Estos
materiales se acumularon en forma de
avalanchas de lodo y ceniza (lahares) hacia
finales del Pleistoceno-Holoceno (1.6 a 0.01
millones de años), rellenando una antigua
topografía y dando origen a una nueva,
bastante plana (Denyer & Arias, 1991).
En el Valle Central los lahares tienen un
espesor cercano a los 60 m, son muy
heterogéneos, contienen fragmentos
andesíticos angulares de más de 1 m y están
inmersos en una matriz arenosa-arcillosa mal
cementada (Denyer & Arias, 1991). Estos
depósitos se encuentran interestratificados
con aluviones y avalanchas volcánicas y son
sobreyacidos por capas de ceniza, similares
a las depositadas por las erupciones del
volcán Irazú en 1963 (Denyer & Arias, 1991).
Propiamente en el sitio de estudio, se ha
identificado una capa de ceniza de un
espesor cercano a los 3.2 m, la cual
sobreyace a un lahar de 2.6 m de espesor y
este a su ves se encuentra sobre un aluvión
de espesor desconocido. Para determinar el
espesor de la capa de ceniza y el lahar, se
realizaron 4 sondeos dinámicos con la sonda
DPL y se revisaron los archivos de
perforaciones cercanas al sitio (Fig. 2). El
resultado de los sondeos DPL se observa en
la figura 3, y el cuadro 1 muestra un resumen
de los espesores encontrados en las mismas
perforaciones. La correlación entre las
perforaciones se puede apreciar en la figura
4. En algunos sectores del sitio de estudio,
es posible que el espesor de ceniza se
encuentre sobreyacido por un relleno, mal
compactado, de materiales removidos
durante la construcción de la urbanización.
Fig. 2 Localización de las perforaciones y
pozos, utilizados en la estimación del
espesor de los depósitos de cenizas.
Fig. 3 Resultados de las perforaciones
con el penetrómetro dinámico DPL.
Cuadro 1: Espesores de los depósitos
geológicos.
Perforación Espesor
de ceniza
[m]
Espesor
del lahar
[m]
Profundidad
del aluvión
[m]
DPL1 3.2 2.9 6.1
DPL2 3.3 2.4 5.7
DPL3 3.3 2.7 6.0
DPL4 3.1 2.5 5.6
Fig. 4 Interpretación de las perforaciones.
En la figura 4 el nivel freático no aparece,
debido a que no se detectó en ninguna de las
perforaciones. Lo anterior se explica debido a
que las capas de ceniza y el lahar se
comportan como acuitardos, el agua que se
infiltra, a través de estos materiales, recarga
el acuífero constituido por el aluvión. Los
depósitos que sobreyacen al aluvión pueden
encontrarse muy cercanos a la saturación
completa durante la temporada lluviosa, pero
sin alcanzar a desarrollar un acuífero, debido
a la permeabilidad sensiblemente más
elevada del mismo aluvión.
Por otro lado, la quebrada Ipís fluye sobre los
materiales del aluvión y considerando que
sus aguas presentan un contenido
apreciablemente alto de detergentes y otras
sustancias, así como depósitos de desechos
sólidos, esta quebrada podría estar
contribuyendo a deteriorar severamente la
calidad del agua del acuífero.
3. PROPIEDADES FÍSICAS Y
MECÁNICAS DE LAS CENIZAS.
El depósito de cenizas se ha caracterizado
física y mecánicamente, pues se considera
que el mismo es el que presenta el mayor
potencial de desestabilizarse en caso de
actividad sísmica. El espesor del depósito de
ceniza (Fig.5) se ha modelado utilizando la
información de las perforaciones antes
descritas y con la ayuda del sistema de
información geográfica ILWIS 3.0 (ITC,
2001).
Fig. 5 Espesor de los depósitos de
cenizas.
Un resumen de estas propiedades se aprecia
en el cuadro 2. Las mismas se han obtenido
mediante la ejecución de ensayos con
muestras inalteradas, en el Laboratorio de
Geotecnia e Hidrogeología, de la Escuela
Centroamericana de Geología, Universidad
de Costa Rica.
1 0
2 0
3 0
4 0
5 0
6 0
7 0
0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 6 .5 7 .0
P r o fu n d id a d [ m ]
D P L 1 D PL 2 D P L 3 D P L 4
#degopesDPL10
Cuadro 2: Propiedades físicas y
mecánicas del depósito de cenizas.
Propiedad Valor
Gravedad específica 2.69
Peso unitario húmedo [kN/m3
] 15.3
Peso unitario saturado [kN/m3
] 16.0
Peso unitario seco [kN/m3
] 9.8
Peso unitario de los sólidos [kN/m3
] 26.4
Relación de vacíos 1.68
Porosidad [%] 63.0
Grado de saturación [%] 90.0
Contenido de humedad [%] 56.0
Cohesión [kPa] 6.0
Angulo de fricción [grados] 29.0
Los ensayos de propiedades físicas se
realizaron en octubre de 2001, lo cual se
refleja en un contenido de humedad del 56%,
con el que el material alcanza un grado de
saturación del 90%. El valor del peso unitario
húmedo es muy cercano al del peso unitario
saturado, esto también se debe al elevado
grado de saturación del material en el campo.
Los ensayos de propiedades mecánicas se
realizaron a contenidos de humedad
mayores, llevando las muestras a
saturaciones cercanas al 100%. El estado de
saturación completa se alcanza cuando el
contenido de humedad asciende a 74.3%.
4. MODELO DETERMINÍSTICO DE
ESTABILIDAD DE LADERAS.
El modelo del talud infinito (Dunn, Andreson
& Kiefer, 1980) se ha utilizado para calcular
el factor de seguridad, bajo las siguientes
condiciones: talud completamente saturado,
pero sin desarrollar un acuífero de acuerdo
con las condiciones hidrogeológicas
previamente descritas; utilización de varios
coeficientes de aceleración sísmica, los
cuales varían de 0.1 de g a 0.3 de g, donde g
es la aceleración de la gravedad en m/s
2
. El
modelo del talud infinito es un modelo
bidimensional, el cual utiliza un plano de
ruptura infinitamente largo para describir la
estabilidad de los taludes.
La profundidad del plano de ruptura se ha
establecido en el contacto del depósito de
cenizas y el lahar. El grado de amenaza de
deslizamiento se puede expresar con el
factor de seguridad (FS), el cual es la
relación entre las fuerzas que tienden a
causar la falla del talud y aquellas que se
oponen al mismo proceso. En el cuadro 3 se
observan las consideraciones hechas con
respecto al factor de seguridad y que se
utilizan para clasificar los resultados del
modelo aplicado, este cuadro se ha
elaborado con base en los trabajos de Pack
et al. (2001) y GCO (1984). La fórmula para
calcular el factor de seguridad en condiciones
estáticas es la siguiente (modificada de
Hammond et al., 1992):
FS= c + cos
2
2[(s(D-Dw)+((s-(w)Dw] tanΝ/(D(s
sen2 cos 2)
donde:
c: cohesión del suelo [kPa],
2: pendiente del terreno,
(s: peso unitario del terreno [kN/m
3
],
(w: peso unitario del agua [kN/m
3
],
D: espesor vertical del material [m],
Dw: altura vertical del nivel freático dentro de
la capa de cenizas y
Ν: ángulo de fricción interna del material.
Cuadro 3: Consideraciones respecto al
factor de seguridad y que se utilizan en la
clasificación de los resultados del
modelo.
Factor de
seguridad Condición Característica
Necesidad
de medidas
correctivas
<= 0.5 Muy inestable
Probabilidad de
desestabilizarse
superior al 50%
en caso de una
aceleración
sísmica dada
Imperante
0.5<FS<=1.0 Inestable
Probabilidad de
desestabilizarse
inferior al 50%
en caso de una
aceleración
sísmica dada
Imperante
1.0<FS<=1.2 Quasi-estable
No se debe
permitir la
construcción de
infraestructura
si no se mejora
la condición del
sitio
Imprescindi
ble
1.2<FS<=1.4
Moderadamente
estable
Se puede
construir
infraestructura
con mejoras
menores del
sitio
Necesario
FS>1.4 Estable Sector estable
No se
requiere
La ecuación anterior puede modificarse para
considerar la aceleración sísmica, con lo que
se obtiene la siguiente expresión:
FS= c+((sD cos
2
2-D(s∀ sen2 cos2-(wDw
cos
2
2)tanΝ/(D(s sen2 cos 2 + D(s∀ cos
2
2)
donde:
∀: coeficiente de aceleración sísmica.
Pack et al. (2001) proponen una forma
adimensional de la ecuación del talud infinito,
en la que introducen las siguientes
expresiones:
C= c/ D(s, m= Dw/ D y r= (w/ (s
Estas expresiones se han utilizado para
desarrollar una forma adimensional de la
ecuación que considera la aceleración
símica:
FS= C+(cos
2
2-∀ sen2 cos2-
mrcos
2
2)tanΝ/(sen2 cos2 + ∀ cos
2
2)
Así mismo, para simplificar la ecuación y
hacerla fácilmente implementable en un
sistema de información geográfica como el
ILWIS, se ha utilizado la siguiente expresión:
A = C / cos 22
Al final, se obtiene la expresión adimensional
utilizada en el cálculo del factor seguridad
como:
FS= A + (cos 2-∀ sen 2 - mr cos 2) tanΝ /
(sen 2 + ∀ cos 2)
5. ANÁLISIS DE RESULTADOS.
En las figuras 6 y 7 se observan los
resultados del cálculo del factor de
seguridad, para las diferentes aceleraciones
sísmicas consideradas. De estas figuras se
desprende que es evidente la posibilidad de
deslizamiento, en ambas márgenes de la
quebrada Ipís, en caso de actividad sísmica.
Según Climent (2000) es práctica común el
uso de cargas sísmicas efectivas para el
diseño de obras de infraestructura, las cuales
son una fracción del valor pico de la
aceleración horizontal esperada. El factor 2/3
del espectro de repuesta elástico se
considera como el mínimo para ser utilizado
en todos los tipos de estructura (Climent,
2000). Tomando en cuenta que para el sitio
de estudio la aceleración pico es de 0.27g
para un período de recurrencia de 50 años
(Climent, 2000), el mínimo a considerar es de
0.18g. Por lo anterior, en adelante, el análisis
de resultados se ejecuta para un escenario
de un factor de seguridad correspondiente
con una aceleración sísmica de 0.20g.
Fig. 6 Resultados del análisis de
estabilidad de laderas para aceleraciones
sísmicas de 0.10, 0.15 y 0.20 de g.
En la figura 8 se aprecia un detalle del
resultado del análisis de estabilidad, para una
aceleración sísmica de 0.20g. Siguiendo lo
expuesto en el cuadro 3 y la figura 8,
podemos decir que en toda el área señalada
como Quasi-estable, Inestable o Muy
Inestable (amarillo, naranja y rojo
respectivamente), se debe prohibir la
construcción de cualquier tipo de obra de
infraestructura. En estos sectores se deben
emprender medidas correctivas, para evitar
el deslizamiento del talud en caso de
actividad sísmica de importancia. Si alguno
de estos sectores se desliza, el resultado
sería el desarrollo de un escarpe subvertical
en las cercanías de las viviendas, el cual
podría continuar desestabilizándose sin
necesidad de ocurrencia sismos y pondría en
peligro a las viviendas mismas y sus
habitantes.
Fig. 7 Resultados del análisis de
estabilidad de laderas para aceleraciones
sísmicas de 0.25 y 0.30 de g.
Fig. 8 Detalle del resultado del análisis de
estabilidad, para una aceleración sísmica
de 0.20g.
Los sectores considerados como
Moderadamente Estables (verde) pueden
comportarse adecuadamente durante un
sismo, sin embargo, requieren de algunas
medidas de estabilización menores, con el
objetivo de alcanzar un factor de seguridad
igual o mayor de 1.4.
En general, las medidas correctivas
involucran el movimiento de terrenos para
suavizar el talud y la construcción de obras
de retención, así como de drenajes. La
realización de estas obras está condicionada
por las limitaciones de espacio, el acceso
difícil al talud y el costo de las mismas.
El tránsito de vehículos livianos por las
cercanías del talud, no afecta
significativamente su estabilidad, pero la
persona que desee circular por este sector,
debe hacerlo bajo su propia responsabilidad.
Por otro lado, el puesto de la Policía debe ser
reubicado lo antes posible, pues se
encuentra al borde de una de las secciones
más inestables del talud.
6. PROTECCIÓN DE LAS MÁRGENES
DE LA QUEBRADA IPÍS ANTE
EROSIÓN Y SOCAVAMIENTO.
Otro problema de inestabilidad de laderas se
presenta si se considera la acción erosiva y
de socavamiento, que ejerce la quebrada Ipís
en sus márgenes. Este efecto se manifiesta
con severidad durante la temporada lluviosa
de nuestro país (Acón & Villalobos, 2002). En
el cuadro 4 se resumen las principales
características hidrológicas de la
microcuenca de la quebrada Ipís, las cuales
se obtienen del estudio de Acón & Villalobos
(2002).
Cuadro 4: Características hidrológicas de
la microcuenca de la quebrada Ipís hasta
la urbanización Setillal.
Área [km2] 1.03
Coeficiente de escorrentía 0.25
Lluvia de 1 hora de duración, que puede
esperarse una vez al año [mm]
34
Diferencia de elevación [m] 220
Longitud del cauce [km] 3.6
Tiempo de concentración [min.] 30
Lluvia máxima horaria, período de retorno 50
años [mm]
86
Tormenta de diseño [mm/h] 127.5
Caudal máximo probable, período de retorno
50 años [m3
/s]
9.11
Acón & Villalobos (2002) establecen que el
ángulo de reposo del talud es de 40°, por lo
cual, estos autores consideran que cualquier
pendiente superior a este valor es vulnerable
a la erosión y socavamiento. En la figura 9 se
aprecian los sectores donde la protección de
márgenes debe ser implementada.
Acón & Villalobos (2002) recomiendan el uso
de gaviones o suelo reforzado, con el
propósito de brindar estabilidad y protección
a los taludes, y resaltan las siguientes
características de estas estructuras:
- Admiten asentamientos
- Cuentan con componentes flexibles
- No se requieren fundaciones
especiales
- No requieren drenaje
- Utilizan material localmente
disponible
- Funcionan como estructura de
contención y protegen contra la
erosión
- No requieren de mano de obra
especializada, ni equipos especiales
- Su entrada en funcionamiento es
inmediata
- Pueden contar con paramentos
verticales, en gradones o inclinados
Fig. 9 Sectores donde se requiere la
implementación de medidas de protección
de márgenes y puntos de observación de
Acón y Villalobos (2002).
La gran cantidad de basura, acumulada a lo
largo del cauce de la quebrada Ipís, impide el
libre flujo y aumenta la vulnerabilidad ante la
socavación (Acón & Villalobos, 2002). Los
mismos autores enfatizan la necesidad de
limpiar el cauce y mantenerlo exento de
obstáculos.
La redes de aguas servidas y pluviales
descargan directamente a la quebrada, lo
cual contribuye a socavar y erosionar el
talud, así como, a aumentar los niveles de
contaminación del recurso hídrico (Acón &
Villalobos, 2002). En la figura 9 se aprecian
algunos puntos, donde Acón & Villalobos
(2002) han realizado las observaciones que
aparecen en el cuadro 5.
Cuadro 5: Recomendaciones brindadas
por Acón & Villalobos (2002), para el
manejo de aguas servidas y pluviales.
Punto
#
Situación actual Recomendación
1 Salida de aguas
pluviales clausurada
Mantenerla en su
estado actual
2
Salida de aguas
pluviales y aguas
negras, más la
descarga del punto 1.
Cuenta con disipador
de energía
Clausurar la salida de
aguas servidas y
conducirla a una planta
de tratamiento.
Mejorar la capacidad
de reducción de
velocidad del disipador,
con la construcción de
canal y gradas de
concreto
3
Salida de aguas
pluviales
Construcción de un
disipador de energía
apropiado
4
Vivienda afectada por
deslizamiento y
tubería de aguas
negras de la misma
Reubicar de la vivienda
y clausurar la tubería
5
Se ha construido una
iglesia y la sede de
Instituto Nacional de
Aprendizaje (INA)
Monitorear el
comportamiento del
talud y en caso
necesario, proceder a
su refuerzo y
protección
7. CONCLUSIONES Y
RECOMENDACIONES.
En el sitio de estudio se ha identificado una
capa de ceniza de un espesor cercano a los
3.2 m, la cual sobreyace a un lahar de 2.6 m
de espesor y este a su ves se encuentra
sobre un aluvión de espesor desconocido.
El nivel freático no se detectó en ninguna de
las perforaciones, debido a que las capas de
ceniza y el lahar se comportan como
acuitardos, el agua que se infiltra, a través de
estos materiales, recarga el acuífero
constituido por el aluvión. Los depósitos que
sobreyacen al aluvión pueden encontrarse
muy cercanos a la saturación completa
durante la temporada lluviosa, pero sin
alcanzar a desarrollar un acuífero, debido a
la permeabilidad sensiblemente más elevada
del mismo aluvión.
La quebrada Ipís fluye sobre los materiales
del aluvión y considerando que sus aguas
presentan un contenido apreciablemente alto
de detergentes y otras sustancias, así como
depósitos de desechos sólidos, esta
quebrada podría estar contribuyendo a
deteriorar severamente la calidad del agua
del acuífero.
El depósito de cenizas se ha caracterizado
física y mecánicamente, pues se considera
que el mismo es el que presenta el mayor
potencial de desestabilizarse en caso de
actividad sísmica.
Es evidente la posibilidad de deslizamiento,
en ambas márgenes de la quebrada Ipís, en
caso de actividad sísmica.
En el área señalada como Quasi-estable,
Inestable o Muy Inestable (amarillo, naranja y
rojo respectivamente), se debe prohibir la
construcción de cualquier tipo de obra de
infraestructura. En estos sectores se deben
emprender medidas correctivas, para evitar
el deslizamiento del talud en caso de
actividad sísmica de importancia. Si alguno
de estos sectores se desliza, el resultado
sería el desarrollo de un escarpe subvertical
en las cercanías de las viviendas, el cual
podría continuar desestabilizándose, sin
necesidad de ocurrencia sismos y pondría en
peligro a las viviendas mismas y sus
habitantes.
Los sectores considerados como
Moderadamente Estables (verde) pueden
comportarse adecuadamente durante un
sismo, sin embargo, requieren de algunas
medidas de estabilización menores, con el
objetivo de alcanzar un factor de seguridad
igual o mayor de 1.4.
Las medidas correctivas involucran el
movimiento de terrenos para suavizar el talud
y la construcción de obras de retención, así
como de drenajes. La realización de estas
obras está condicionada por las limitaciones
de espacio, el acceso difícil al talud y el costo
de las mismas.
El tránsito de vehículos livianos por las
cercanías del talud, no afecta
significativamente su estabilidad, pero la
persona que desee circular por este sector,
debe hacerlo bajo su propia responsabilidad.
El puesto de la Policía debe ser reubicado lo
antes posible, pues se encuentra al borde de
una de las secciones más inestables del
talud.
Se deben considerar las recomendaciones
de Acón & Villalobos (2002), en lo que
respecta a limpiar el cauce de la quebrada
Ipís y acatar sus observaciones en cada uno
de los puntos, donde sugieren mejoras.
8. BIBLIOGRAFÍA.
Acón, E. & Villalobos, L.J., 2002: Informe de
zonas de peligro de socavación en margen
sur de la quebrada Ipís, Setillal, Goicoechea.
Informe de Trabajo Comunal Universitario
(TCU). Proyecto Estabilidad de Taludes en
Obras de Interés Social, Escuela
Centroamericana de Geología, Universidad
de Costa Rica. (Informe inédito)
Climent, A. (Editor), 2000: Microzonificación
Sísmica. NORAD-CEPREDENAC. San José,
Costa Rica. 120 p.p.
Denyer, P. & Arias, O., 1991: Estratigrafía de
la región central de Costa Rica. Revista
Geológica de América Central, 12: 1-59.
Dunn, I.S., Anderson, L.R. & Kiefer, F.W.,
1980: Fundamentals of Geotechnical
Analysis. John Wiley & Sons, New York. 416
p.p.
GCO, 1984: Geotechnical Manual for Slopes.
Geotechnical Control Office. Engineering
Development Department, Hong Kong. 295
p.p.
Hamnond, C., Hall, D., Miller, S. & Swetik, P.,
1992: Level I Stability Analysis (LISA),
Documentation for Versión 2.0. General
Technical Report INT-285, USDA, Forest
Service Intermountain Research Station.
ITC, 2001: Ilwis 3.0 Academic, Userr’s Guide.
International Istitute for Aerospace Survey
and Earth Sciences. Enschede, The
Netherlands. 530 p.p.
Pack, R.T., Tarboton, D.G. & Goodwin, C.N.,
2001: A stability index approach to terrein
stability hazard mapping, SINMAP User’s
Manual. Canadian Forest Products Ltd.
Forest Renewal B.C. 68 p.p.

More Related Content

What's hot

Túneles
TúnelesTúneles
TúnelesIrveen
 
Asentamiento y consolidación de suelos
Asentamiento y consolidación de suelosAsentamiento y consolidación de suelos
Asentamiento y consolidación de suelosdiegoupt
 
1.1. exposicion clasificacion de rocas (clases) (1)
1.1.  exposicion  clasificacion  de  rocas  (clases) (1)1.1.  exposicion  clasificacion  de  rocas  (clases) (1)
1.1. exposicion clasificacion de rocas (clases) (1)Yoel Huayhua
 
Definiciones hidrologia parametros cuenca
Definiciones hidrologia   parametros cuencaDefiniciones hidrologia   parametros cuenca
Definiciones hidrologia parametros cuencaHarry Campos Ventura
 
Planificación de campaña de investigación en función de la actuación geotécni...
Planificación de campaña de investigación en función de la actuación geotécni...Planificación de campaña de investigación en función de la actuación geotécni...
Planificación de campaña de investigación en función de la actuación geotécni...Guillermo García Herrera
 
Resistencia de macizos_rocosos_hoek-brown
Resistencia de macizos_rocosos_hoek-brownResistencia de macizos_rocosos_hoek-brown
Resistencia de macizos_rocosos_hoek-brownivano017
 
Clasificaciones Geomecánicas: Carga de Roca, Terzaghi, 1946
Clasificaciones Geomecánicas: Carga de Roca, Terzaghi, 1946Clasificaciones Geomecánicas: Carga de Roca, Terzaghi, 1946
Clasificaciones Geomecánicas: Carga de Roca, Terzaghi, 1946Ivo Fritzler
 
Propiedades de Roca y Ensayos de Laboratorio
Propiedades de Roca y Ensayos de LaboratorioPropiedades de Roca y Ensayos de Laboratorio
Propiedades de Roca y Ensayos de LaboratorioIvo Fritzler
 
Cohesion y angulo de friccion.docx (1)
Cohesion y angulo de friccion.docx (1)Cohesion y angulo de friccion.docx (1)
Cohesion y angulo de friccion.docx (1)wandaly estevez garcia
 
Ensayos en Mecánica de Rocas
Ensayos en Mecánica de RocasEnsayos en Mecánica de Rocas
Ensayos en Mecánica de RocasEsaú Vargas S.
 
Metodos de analisis de estabilidad de taludes
Metodos  de analisis de estabilidad de taludesMetodos  de analisis de estabilidad de taludes
Metodos de analisis de estabilidad de taludesCamilo Diaz Garcia
 

What's hot (20)

Trabajo final talud
Trabajo final taludTrabajo final talud
Trabajo final talud
 
Túneles
TúnelesTúneles
Túneles
 
Mecánica de Rocas
Mecánica de RocasMecánica de Rocas
Mecánica de Rocas
 
Asentamiento y consolidación de suelos
Asentamiento y consolidación de suelosAsentamiento y consolidación de suelos
Asentamiento y consolidación de suelos
 
Permeabilidad en rocas
Permeabilidad en rocasPermeabilidad en rocas
Permeabilidad en rocas
 
1.1. exposicion clasificacion de rocas (clases) (1)
1.1.  exposicion  clasificacion  de  rocas  (clases) (1)1.1.  exposicion  clasificacion  de  rocas  (clases) (1)
1.1. exposicion clasificacion de rocas (clases) (1)
 
MACIZOS ROCOSOS
MACIZOS ROCOSOSMACIZOS ROCOSOS
MACIZOS ROCOSOS
 
Definiciones hidrologia parametros cuenca
Definiciones hidrologia   parametros cuencaDefiniciones hidrologia   parametros cuenca
Definiciones hidrologia parametros cuenca
 
Planificación de campaña de investigación en función de la actuación geotécni...
Planificación de campaña de investigación en función de la actuación geotécni...Planificación de campaña de investigación en función de la actuación geotécni...
Planificación de campaña de investigación en función de la actuación geotécni...
 
Resistencia de macizos_rocosos_hoek-brown
Resistencia de macizos_rocosos_hoek-brownResistencia de macizos_rocosos_hoek-brown
Resistencia de macizos_rocosos_hoek-brown
 
Clasificaciones Geomecánicas: Carga de Roca, Terzaghi, 1946
Clasificaciones Geomecánicas: Carga de Roca, Terzaghi, 1946Clasificaciones Geomecánicas: Carga de Roca, Terzaghi, 1946
Clasificaciones Geomecánicas: Carga de Roca, Terzaghi, 1946
 
Tipos acuiferos
Tipos acuiferosTipos acuiferos
Tipos acuiferos
 
Propiedades de Roca y Ensayos de Laboratorio
Propiedades de Roca y Ensayos de LaboratorioPropiedades de Roca y Ensayos de Laboratorio
Propiedades de Roca y Ensayos de Laboratorio
 
Informe de geologia
Informe de geologiaInforme de geologia
Informe de geologia
 
9. ensayo de sísmica de refracción
9. ensayo de sísmica de refracción9. ensayo de sísmica de refracción
9. ensayo de sísmica de refracción
 
Cohesion y angulo de friccion.docx (1)
Cohesion y angulo de friccion.docx (1)Cohesion y angulo de friccion.docx (1)
Cohesion y angulo de friccion.docx (1)
 
Ensayos en Mecánica de Rocas
Ensayos en Mecánica de RocasEnsayos en Mecánica de Rocas
Ensayos en Mecánica de Rocas
 
Flujos de agua en los macizos rocosos
Flujos de agua en los macizos rocososFlujos de agua en los macizos rocosos
Flujos de agua en los macizos rocosos
 
Tono, textura, patrones
Tono, textura, patronesTono, textura, patrones
Tono, textura, patrones
 
Metodos de analisis de estabilidad de taludes
Metodos  de analisis de estabilidad de taludesMetodos  de analisis de estabilidad de taludes
Metodos de analisis de estabilidad de taludes
 

Viewers also liked

Deslizamientos de Tierra, Causas y Consecuencias
Deslizamientos de Tierra, Causas y ConsecuenciasDeslizamientos de Tierra, Causas y Consecuencias
Deslizamientos de Tierra, Causas y ConsecuenciasNelson Montilla
 
Derrumbes deslizamientos
Derrumbes deslizamientosDerrumbes deslizamientos
Derrumbes deslizamientosie1198
 
Deslizamientos de Tierra
Deslizamientos de TierraDeslizamientos de Tierra
Deslizamientos de TierraNelson Montilla
 
Medidas de Prevención para la Erosón
Medidas de Prevención para la ErosónMedidas de Prevención para la Erosón
Medidas de Prevención para la ErosónNelson Montilla
 
Desastres topograficos, deslizamientos y movimientos de tierra
Desastres topograficos, deslizamientos y movimientos de tierraDesastres topograficos, deslizamientos y movimientos de tierra
Desastres topograficos, deslizamientos y movimientos de tierraCG Juan Carlos
 
Movimiento de masa
Movimiento de masaMovimiento de masa
Movimiento de masaAvallejos_
 
Clasificacion deslizamientos, Movimientos en Masa
Clasificacion deslizamientos, Movimientos en MasaClasificacion deslizamientos, Movimientos en Masa
Clasificacion deslizamientos, Movimientos en MasaJUANCA650
 
Huaycos
HuaycosHuaycos
Huaycosie1198
 
Guía para análisis de amenazas, vulnerabilidades
Guía para análisis de amenazas, vulnerabilidadesGuía para análisis de amenazas, vulnerabilidades
Guía para análisis de amenazas, vulnerabilidadesPlan International Ecuador
 
CONSECUENCIAS DEL CAMBIO CLIMATICO -Tormentas tropicales consec-c.c
CONSECUENCIAS DEL CAMBIO CLIMATICO -Tormentas tropicales  consec-c.cCONSECUENCIAS DEL CAMBIO CLIMATICO -Tormentas tropicales  consec-c.c
CONSECUENCIAS DEL CAMBIO CLIMATICO -Tormentas tropicales consec-c.cdanialguzman
 
Taludes capitulo ii
Taludes capitulo iiTaludes capitulo ii
Taludes capitulo iivieri9413
 
Geotecnia de taludes listo
Geotecnia de taludes   listoGeotecnia de taludes   listo
Geotecnia de taludes listoShadowprotos
 
Desastres Naturales
Desastres NaturalesDesastres Naturales
Desastres Naturalesliggiemar
 
Conceptos sobre amenazas vulnerabilidad
Conceptos sobre amenazas vulnerabilidadConceptos sobre amenazas vulnerabilidad
Conceptos sobre amenazas vulnerabilidadnicolaslargoceballos
 
Diapositivas de desastres naturales
Diapositivas de desastres naturalesDiapositivas de desastres naturales
Diapositivas de desastres naturalesgabrielaobesorios
 

Viewers also liked (20)

Deslizamientos de Tierra, Causas y Consecuencias
Deslizamientos de Tierra, Causas y ConsecuenciasDeslizamientos de Tierra, Causas y Consecuencias
Deslizamientos de Tierra, Causas y Consecuencias
 
Derrumbes deslizamientos
Derrumbes deslizamientosDerrumbes deslizamientos
Derrumbes deslizamientos
 
Deslizamientos de Tierra
Deslizamientos de TierraDeslizamientos de Tierra
Deslizamientos de Tierra
 
Medidas de Prevención para la Erosón
Medidas de Prevención para la ErosónMedidas de Prevención para la Erosón
Medidas de Prevención para la Erosón
 
Desastres topograficos, deslizamientos y movimientos de tierra
Desastres topograficos, deslizamientos y movimientos de tierraDesastres topograficos, deslizamientos y movimientos de tierra
Desastres topograficos, deslizamientos y movimientos de tierra
 
Movimiento de masa
Movimiento de masaMovimiento de masa
Movimiento de masa
 
Clasificacion deslizamientos, Movimientos en Masa
Clasificacion deslizamientos, Movimientos en MasaClasificacion deslizamientos, Movimientos en Masa
Clasificacion deslizamientos, Movimientos en Masa
 
Dessastres
DessastresDessastres
Dessastres
 
Huaycos
HuaycosHuaycos
Huaycos
 
Guía para análisis de amenazas, vulnerabilidades
Guía para análisis de amenazas, vulnerabilidadesGuía para análisis de amenazas, vulnerabilidades
Guía para análisis de amenazas, vulnerabilidades
 
CONSECUENCIAS DEL CAMBIO CLIMATICO -Tormentas tropicales consec-c.c
CONSECUENCIAS DEL CAMBIO CLIMATICO -Tormentas tropicales  consec-c.cCONSECUENCIAS DEL CAMBIO CLIMATICO -Tormentas tropicales  consec-c.c
CONSECUENCIAS DEL CAMBIO CLIMATICO -Tormentas tropicales consec-c.c
 
Movimiento de masas
Movimiento de masasMovimiento de masas
Movimiento de masas
 
Taludes capitulo ii
Taludes capitulo iiTaludes capitulo ii
Taludes capitulo ii
 
Prevenir es Apostar por el Futuro
Prevenir es Apostar por el FuturoPrevenir es Apostar por el Futuro
Prevenir es Apostar por el Futuro
 
Geotecnia de taludes listo
Geotecnia de taludes   listoGeotecnia de taludes   listo
Geotecnia de taludes listo
 
Prevencion huayco
Prevencion huaycoPrevencion huayco
Prevencion huayco
 
Desastres Naturales
Desastres NaturalesDesastres Naturales
Desastres Naturales
 
Desastres antropicos
Desastres antropicosDesastres antropicos
Desastres antropicos
 
Conceptos sobre amenazas vulnerabilidad
Conceptos sobre amenazas vulnerabilidadConceptos sobre amenazas vulnerabilidad
Conceptos sobre amenazas vulnerabilidad
 
Diapositivas de desastres naturales
Diapositivas de desastres naturalesDiapositivas de desastres naturales
Diapositivas de desastres naturales
 

Similar to Deslizamientos

diastrofismo - secuencia didactica 3-fuerzas-internas.pdf
diastrofismo - secuencia didactica 3-fuerzas-internas.pdfdiastrofismo - secuencia didactica 3-fuerzas-internas.pdf
diastrofismo - secuencia didactica 3-fuerzas-internas.pdfyeison Maldonado
 
Hundimiento de suelos
Hundimiento de suelosHundimiento de suelos
Hundimiento de suelosCamilo Moreno
 
Concepto de deslizamientos
Concepto de deslizamientosConcepto de deslizamientos
Concepto de deslizamientosJUANCA
 
Procesos gravitacionales 2013
Procesos gravitacionales 2013Procesos gravitacionales 2013
Procesos gravitacionales 2013Casimiro Barbado
 
Procesos gravitacionales 2012
Procesos gravitacionales 2012Procesos gravitacionales 2012
Procesos gravitacionales 2012Casimiro Barbado
 
Tema20sistemaladera
Tema20sistemaladeraTema20sistemaladera
Tema20sistemaladeramartagar78
 
Abau setiembre 2018 opción A
Abau setiembre 2018 opción AAbau setiembre 2018 opción A
Abau setiembre 2018 opción Ajmsantaeufemia
 
Prevención de Deslizamientos
Prevención de DeslizamientosPrevención de Deslizamientos
Prevención de DeslizamientosMichael Castillo
 
Movimiento de masas y estabilidad de taludes naturales
Movimiento de masas y estabilidad de taludes naturalesMovimiento de masas y estabilidad de taludes naturales
Movimiento de masas y estabilidad de taludes naturalesEFRAIN APLIKA2
 
Sismo, fallas, ondas sisimicas e instrumentos de medidicón y registro
Sismo, fallas, ondas sisimicas  e instrumentos de medidicón y registroSismo, fallas, ondas sisimicas  e instrumentos de medidicón y registro
Sismo, fallas, ondas sisimicas e instrumentos de medidicón y registroCinthia Gonzales Ronquillo
 
Placas tectónicas, vulcanismo, diastrofismo
Placas tectónicas, vulcanismo, diastrofismoPlacas tectónicas, vulcanismo, diastrofismo
Placas tectónicas, vulcanismo, diastrofismosergiofloresg
 
Tema 2 Energia y el relieve
Tema 2 Energia y el relieveTema 2 Energia y el relieve
Tema 2 Energia y el relievepacobueno1968
 
Erosion y movimiento de tierras
Erosion y movimiento de tierrasErosion y movimiento de tierras
Erosion y movimiento de tierrasDiego Ramos
 

Similar to Deslizamientos (20)

1. Clase_03 - Unidad 3A.pptx
1. Clase_03 - Unidad 3A.pptx1. Clase_03 - Unidad 3A.pptx
1. Clase_03 - Unidad 3A.pptx
 
1. estabilidad taludes
1.  estabilidad taludes1.  estabilidad taludes
1. estabilidad taludes
 
diastrofismo - secuencia didactica 3-fuerzas-internas.pdf
diastrofismo - secuencia didactica 3-fuerzas-internas.pdfdiastrofismo - secuencia didactica 3-fuerzas-internas.pdf
diastrofismo - secuencia didactica 3-fuerzas-internas.pdf
 
Hundimiento de suelos
Hundimiento de suelosHundimiento de suelos
Hundimiento de suelos
 
Concepto de deslizamientos
Concepto de deslizamientosConcepto de deslizamientos
Concepto de deslizamientos
 
Procesos gravitacionales 2013
Procesos gravitacionales 2013Procesos gravitacionales 2013
Procesos gravitacionales 2013
 
37403400-Geotecnica-de-Taludes.pdf
37403400-Geotecnica-de-Taludes.pdf37403400-Geotecnica-de-Taludes.pdf
37403400-Geotecnica-de-Taludes.pdf
 
Procesos gravitacionales 2012
Procesos gravitacionales 2012Procesos gravitacionales 2012
Procesos gravitacionales 2012
 
Deformación de la corteza cap 10
Deformación de la corteza cap 10Deformación de la corteza cap 10
Deformación de la corteza cap 10
 
Dezlizamientos
DezlizamientosDezlizamientos
Dezlizamientos
 
Tema20sistemaladera
Tema20sistemaladeraTema20sistemaladera
Tema20sistemaladera
 
Abau setiembre 2018 opción A
Abau setiembre 2018 opción AAbau setiembre 2018 opción A
Abau setiembre 2018 opción A
 
Prevención de Deslizamientos
Prevención de DeslizamientosPrevención de Deslizamientos
Prevención de Deslizamientos
 
Movimiento de masas y estabilidad de taludes naturales
Movimiento de masas y estabilidad de taludes naturalesMovimiento de masas y estabilidad de taludes naturales
Movimiento de masas y estabilidad de taludes naturales
 
Sismo, fallas, ondas sisimicas e instrumentos de medidicón y registro
Sismo, fallas, ondas sisimicas  e instrumentos de medidicón y registroSismo, fallas, ondas sisimicas  e instrumentos de medidicón y registro
Sismo, fallas, ondas sisimicas e instrumentos de medidicón y registro
 
Placas tectónicas, vulcanismo, diastrofismo
Placas tectónicas, vulcanismo, diastrofismoPlacas tectónicas, vulcanismo, diastrofismo
Placas tectónicas, vulcanismo, diastrofismo
 
Tema 2 Energia y el relieve
Tema 2 Energia y el relieveTema 2 Energia y el relieve
Tema 2 Energia y el relieve
 
Diastrofismo
DiastrofismoDiastrofismo
Diastrofismo
 
Erosion y movimiento de tierras
Erosion y movimiento de tierrasErosion y movimiento de tierras
Erosion y movimiento de tierras
 
Geologia libro web
Geologia libro webGeologia libro web
Geologia libro web
 

More from JUANCA650

Problemas geometria
Problemas geometriaProblemas geometria
Problemas geometriaJUANCA650
 
Mineralogía y rocas
Mineralogía y rocasMineralogía y rocas
Mineralogía y rocasJUANCA650
 
FUNCIÓN LINEAL
FUNCIÓN LINEALFUNCIÓN LINEAL
FUNCIÓN LINEALJUANCA650
 
1er concurso 3_compendio_de_geologia_general (1)
1er concurso 3_compendio_de_geologia_general (1)1er concurso 3_compendio_de_geologia_general (1)
1er concurso 3_compendio_de_geologia_general (1)JUANCA650
 
El+sistema+solar+i[1]
El+sistema+solar+i[1]El+sistema+solar+i[1]
El+sistema+solar+i[1]JUANCA650
 
Estructura interna tierra. placas tectonicas
Estructura interna tierra. placas tectonicasEstructura interna tierra. placas tectonicas
Estructura interna tierra. placas tectonicasJUANCA650
 
Procesos exo y endo
Procesos exo y endoProcesos exo y endo
Procesos exo y endoJUANCA650
 
Importancia de la geología
Importancia de la geologíaImportancia de la geología
Importancia de la geologíaJUANCA650
 
SILABO DE GEOLOGÍA UAP INGENIERÍA CIVIL
SILABO DE GEOLOGÍA UAP INGENIERÍA CIVILSILABO DE GEOLOGÍA UAP INGENIERÍA CIVIL
SILABO DE GEOLOGÍA UAP INGENIERÍA CIVILJUANCA650
 
Ejercicios resueltos de proporcionalidad-y-porcentajes
Ejercicios  resueltos de proporcionalidad-y-porcentajesEjercicios  resueltos de proporcionalidad-y-porcentajes
Ejercicios resueltos de proporcionalidad-y-porcentajesJUANCA650
 

More from JUANCA650 (12)

Problemas geometria
Problemas geometriaProblemas geometria
Problemas geometria
 
Mineralogía y rocas
Mineralogía y rocasMineralogía y rocas
Mineralogía y rocas
 
FUNCIÓN LINEAL
FUNCIÓN LINEALFUNCIÓN LINEAL
FUNCIÓN LINEAL
 
La tierra
La tierraLa tierra
La tierra
 
1er concurso 3_compendio_de_geologia_general (1)
1er concurso 3_compendio_de_geologia_general (1)1er concurso 3_compendio_de_geologia_general (1)
1er concurso 3_compendio_de_geologia_general (1)
 
El+sistema+solar+i[1]
El+sistema+solar+i[1]El+sistema+solar+i[1]
El+sistema+solar+i[1]
 
Estructura interna tierra. placas tectonicas
Estructura interna tierra. placas tectonicasEstructura interna tierra. placas tectonicas
Estructura interna tierra. placas tectonicas
 
Procesos exo y endo
Procesos exo y endoProcesos exo y endo
Procesos exo y endo
 
Geologia
GeologiaGeologia
Geologia
 
Importancia de la geología
Importancia de la geologíaImportancia de la geología
Importancia de la geología
 
SILABO DE GEOLOGÍA UAP INGENIERÍA CIVIL
SILABO DE GEOLOGÍA UAP INGENIERÍA CIVILSILABO DE GEOLOGÍA UAP INGENIERÍA CIVIL
SILABO DE GEOLOGÍA UAP INGENIERÍA CIVIL
 
Ejercicios resueltos de proporcionalidad-y-porcentajes
Ejercicios  resueltos de proporcionalidad-y-porcentajesEjercicios  resueltos de proporcionalidad-y-porcentajes
Ejercicios resueltos de proporcionalidad-y-porcentajes
 

Deslizamientos

  • 1. 1. FUNDAMENTOS SOBRE DESLIZAMIENTOS. M. Sc. Rolando Mora Chinchilla Los movimientos en masa son procesos de la Geodinámica Externa, los cuales modifican las diferentes formas del terreno. Los deslizamientos, a su ves, son la principal manifestación de los movimientos en masa. Los deslizamientos, como todos los movimientos en masa, involucran el movimiento, pendiente abajo, de los materiales que componen la ladera (Fig. 1.1) bajo la influencia de la gravedad y pueden ser disparados por lluvias, sismos y actividad humana. Fig. 1.1 Deslizamiento Arancibia (1993) (foto R. Mora) 1.1 TIPOS DE MOVIMIENTOS. Los deslizamientos pueden ocurrir como: caídas, basculamientos, separaciones laterales, deslizamientos o flujos. Caídas: masas desprendidas de pendientes muy fuertes o escarpes, que se mueven en caída libre, dando tumbos (saltos) o ruedan ladera abajo (Fig. 1.2). Fig. 1.2 Caída de rocas (Varnes, 1978). Basculamientos: rotación de uno o más elementos alrededor de un punto pivote (Fig. 1.3). Fig. 1.3 Basculamiento de columnas de roca (Varnes, 1978) Separaciones laterales: movimiento de extensión lateral acompañado por fracturamiento cortante o tensional (Fig. 1.4). Fig. 1.4 Separación lateral (Varnes, 1978) Deslizamientos: desplazan masas a lo largo de uno o más planos discretos. Pueden ser rotacionales o translacionales en su movimiento. El movimiento rotacional se da donde la superficie de ruptura es curva, la masa rota hacia atrás alrededor de un eje paralelo a la ladera (Fig. 1.5). Fig. 1.5 Deslizamiento rotacional (Skinner & Porter, 1992) El movimiento translacional se da cuando la superficie de ruptura es más o menos planar
  • 2. o suavemente ondulante y la masa se mueve paralela a la superficie del terreno (Fig. 1.6). Fig. 1.6 Deslizamiento translacional (Skinner & Porter, 1992) Flujos: masas que se mueven como unidades deformadas, viscosas, sin un plano discreto de ruptura (Fig. 1.7). Fig. 1.7 Flujo de detritos (Skinner & Porter, 1992) Algunos deslizamientos pueden presentar más de un tipo de movimiento, en este caso se describen como complejos. 1.2 TIPOS DE MATERIALES. Los deslizamientos pueden involucrar desplazamientos en roca, suelo o una combinación de ambos. Roca se refiere a la roca dura o firme, la cual se encontraba intacta y en su sitio antes del movimiento Suelo se entiende como un conjunto de partículas sueltas, no consolidadas o roca pobremente cementada o agregados inorgánicos. El suelo puede ser residual (formado en el sitio) (Fig. 1.8) o material transportado. El suelo se puede describir como detritos (suelo de grano grueso) o suelo propiamente dicho (suelo de grano fino). El detrito es un suelo con un 20 a 80% de fragmentos mayores de 2 mm. Suelo fino es el que está compuesto de más del 80% de fragmentos menores de 2 mm. Zona A: arena, limo y arcilla sin estructura. Pueden encontrarse bloques en la superficie Zona B: material residual con bloques de roca. El porcentaje de roca es menor del 50%. Los bloques son redondeados y no se encuentran interconectados Zona C: Bloques de roca con material residual a lo largo de las discontinuidades. El porcentaje de roca es de 50-90% y los bloques son angulares y se encuentran interconectados Zona D: Más de 90% de roca. Poco material residual a lo largo de las discontinuidades, las que pueden encontrarse manchadas con óxidos de hierro Fig. 1.8 Perfil idealizado de suelo residual (Ruxton & Berry, 1957) 1.3 REFERENCIAS BIBLIOGRÁFICAS. Ruxton, B.P. & Berry, L., 1957: Weathering of granite and associated erosional features in Hong Kong. Bulletin of the Geological Society of America, vol. 68, pp 1263-1291. Skinner, B.J. & Porter, S.C., 1992: The Dynamic Earth: an introduction to physical geology. II edition, John Wiley & Sons, Inc. New York. 570 p.p. Varnes, D.J., 1978: Slope Movement: Types and Proceses. In Scuster & Krizek, 1978: Landslides: Analysis and Control. Special report 176. Transportation Research Board, Comisión on Sociotechnical Systems, National Research Council. National Academy of Sciences, Washungton, D.C. 234 p.p.
  • 3. 2. LAS PARTES DE UN DESLIZAMIENTO. M.Sc. Rolando Mora Chinchilla 2.1 NOMENCLATURA DE LOS DESLIZAMIENTOS. Debido a que un deslizamiento involucra una masa de suelo o roca moviéndose ladera abajo, este puede ser descrito con base en las diferencias entre la masa que forma el deslizamiento y la ladera que no ha fallado. La ladera que no ha fallado se puede definir como la superficie original de terreno. Esta es, a su vez, la superficie que existía antes de que el movimiento se diera (Fig. 2.1). Si esta es la superficie de un deslizamiento antiguo, el hecho debe resaltarse, pues se trata de una reactivación del deslizamiento. Fig. 2.1 Deslizamiento Quebradas, Santa Ana, Costa Rica, se aprecia la superficie original del terreno (Foto R. Mora). La masa que se ha movido se conoce como el material desplazado, es decir, es el material que se ha movido de su posición original en la ladera. El mismo pude encontrarse en un estado deformado o no deformado (Fig. 2.2). El material desplazado sobreyace dos sectores distintos. El sector de pérdida es el área dentro de la cual el material desplazado descansa bajo la superficie original del terreno y está definido por la superficie de ruptura (Fig. 2.3). En el caso de que no quede material sobre la superficie de ruptura o donde ha ocurrido flujo en vez de ruptura, es más conveniente utilizar el término área fuente. El sector de acumulación es el área donde el material desplazado descansa sobre la superficie del terreno (Fig. 2.3). Este sector es definido por la superficie de separación subyacente, la cual separa el material desplazado del material estable, en el cual no se ha desarrollado ruptura alguna. En algunas ocasiones es mejor llamar a este sector área de depositación. Fig. 2.2 Material desplazado en estado deformado, deslizamiento Tapezco, Santa Ana, Costa Rica (Foto R. Mora). Fig. 2.3 Nomenclatura de un deslizamiento (Varnes, 1978) 2.2 PARTES DE UN DESLIZAMIENTO. Corona: sector de la ladera que no ha fallado y localizada arriba del deslizamiento. Puede presentar grietas, llamadas grietas de la corona. Escarpe principal: superficie de pendiente muy fuerte, localizada en el límite del deslizamiento y originada por el material desplazado de la ladera. Si este escarpe se proyecta bajo el material desplazado, se obtiene la superficie de ruptura. Escarpe menor: superficie de pendiente muy fuerte en el material desplazado y producida por el movimiento diferencial dentro de este material. Superficie original del terreno Material desplazado Sector de pérdida Superficie de ruptura Sector de acumulaci
  • 4. Punta de la superficie de ruptura: la intersección (algunas veces cubierta) de la parte baja de la superficie de ruptura y la superficie original del terreno. Cabeza: la parte superior del material desplazado a lo largo de su contacto con el escarpe principal. Tope: el punto más alto de contacto entre el material desplazado y el escarpe principal. Cuerpo principal: la parte del material desplazado que sobreyace la superficie de ruptura localizada entre el escarpe principal y la punta de la superficie de ruptura. Flanco: lado del deslizamiento Pie: la porción de material desplazado que descansa ladera abajo desde la punta de la superficie de ruptura Dedo: el margen del material desplazado más distante del escarpe principal. Punta: el punto en el pie más distante del tope del deslizamiento. Fig. 2.4 Partes de un deslizamiento (Varnes, 1978). 2.3 OTRAS CARACTERÍSTICAS DE UN DESLIZAMIENTO. Algunas veces se torna necesario describir el crecimiento de un deslizamiento. Se sugieren algunos términos en función de cómo la ruptura se propaga en relación con la dirección de movimiento. Ruptura retrogresiva: ampliación del deslizamiento en la dirección opuesta a su movimiento. Ruptura en avance: ampliación del deslizamiento en la dirección del movimiento. Donde la ampliación se da en ambas direcciones, se utiliza el término progresivo. Movimiento simple: movimiento rotacional o translacional de una masa individual a lo largo de una superficie de ruptura particular (Fig. 2.5). Fig. 2.5 Movimiento simple (Hutchinson, 1968). Movimiento múltiple: una o más masas con el mismo tipo de movimiento a lo largo de dos o más superficies de ruptura distintas (Fig. 2.6). Fig. 2.6 Movimiento múltiple (Hutchinson, 1968). Si un movimiento múltiple se desarrolla a lo largo de un período de tiempo, se utiliza el término movimiento sucesivo (Fig. 2.7). Fig. 2.7 Movimiento sucesivo (Hutchinson, 1968). 2.4 TÉRMINOS RELACIONADOS CON EL CONTENIDO DE HUMEDAD. Seco: no hay humedad visible Coro naEscarpe principalEscarp e Punta de la superficie de ruptura Cabeza Tope Cuerpo principal Flanco Pie Dedo Punta
  • 5. Húmedo: contiene algo de agua pero no en estado libre, se comporta como un sólido plástico y no como un fluido. Mojado: contiene suficiente agua para comportarse como un fluido, el agua fluye del material o forma depósitos significativos (charcas, lagunas). Muy mojado: contiene suficiente agua para fluir como un líquido viscoso en pendientes bajas. 2.5 TÉRMINOS RELACIONADOS CON LA VELOCIDAD DE MOVIMIENTO. La velocidad de movimiento de los deslizamientos varía desde extremadamente lenta (menos de 0.06 m/año) a extremadamente rápida (3 m/s). 2.6 REFERENCIAS BIBLIOGRAFICAS. Hutchinson, J.N., 1968: Mass Movement. In The Enciclopedia of Geomorphology (Fairbridge, R.W., ed., Reinhold Book Corp., New York, pp. 688-696. Varnes, D.J., 1978: Slope Movement: Types and Proceses. In Scuster & Krizek, 1978: Landslides: Analysis and Control. Special report 176. Transportation Research Board, Comisión on Sociotechnical Systems, National Research Council. National Academy of Sciences, Washungton, D.C. 234 p.p.
  • 6. 3. CLASIFICACIÓN DE LOS DESLIZAMIENTOS. M. Sc. Rolando Mora Chinchilla Los deslizamientos son clasificados con base en diferentes características de acuerdo a varios esquemas de clasificación. Los esquemas varían de acuerdo con el propósito de la clasificación. La aplicación de los términos de una clasificación aceptada, facilita la comunicación y contribuye al desarrollo de generalizaciones válidas sobre la ocurrencia de los diferentes tipos de deslizamientos. Algunos investigadores cuestionan la utilidad de los esquemas de clasificación, debido a las variaciones entre deslizamientos individuales o a la falta de cuantificación a la hora de definir subcategorías discretas. Una de las clasificaciones más comúnmente utilizadas es la de Varnes (1978) (Cuadro 3.1), la cual utiliza el tipo de movimiento y la naturaleza del material. Posteriormente, la geometría, el movimiento y otras características son empleadas para definir subcategorías discretas. Cuadro 3.1:Clasificación de los deslizamientos (Varnes, 1978). Tipo de material SueloTipo de movimiento Roca De grano grueso De grano fino Caídas Caídas de rocas Caídas de detritos Caídas de suelos Basculamientos Basculamiento de rocas Basculamiento de detritos Basculamiento de suelos Rotacionales Deslizamiento rotacional de rocas Deslizamiento rotacional de detritos Deslizamiento rotacional de suelos Deslizamientos Translacionales Deslizamiento translacional de rocas Deslizamiento translacional de detritos Deslizamiento translacional de suelos Separaciones laterales Separación lateral en roca Separación lateral en detritos Separación lateral en suelos Flujos Flujo de rocas Flujo de detritos Flujo de suelos Complejos Combinación de dos o más tipos
  • 7. 3.1 CAÍDAS. Todas las caídas se inician con un desprendimiento de suelo o roca de una ladera muy empinada, a lo largo de una superficie en la que poco o ningún desplazamiento cortante se desarrolla (Cruden & Varnes, 1996) (Fig. 3.1). El material desciende en caída libre, saltando o rodando, el movimiento es de muy rápido a extremadamente rápido (Cruden & Varnes, 1996) (Fig. 3.1). Solo cuando la masa desplazada es socavada, las caídas son precedidas por pequeños deslizamientos o movimientos de basculamiento que separan el material de la masa no perturbada (Cruden & Varnes, 1996). Socavamiento ocurre típicamente en suelos cohesivos o rocas al pie de escarpes que sufren el ataque de las olas o debido a la erosión de márgenes de ríos. Fig. 3.1 Caída de rocas (Varnes, 1978) 3.2 BASCULAMIENTOS. Un basculamiento es la rotación hacia adelante (afuera) de una masa de suelo o roca, alrededor de un punto o eje bajo el centro de gravedad de la masa desplazada (Cruden & Varnes, 1996) (Figs. 3.2 , 3.3 y 3.4). Fig. 3.2 Basculamiento de columnas de roca (Cruden & Varnes, 1996) Fig. 3.3 Basculamiento de detritos (Varnes, 1978). El basculamiento algunas veces es causado por el empuje del material localizado ladera arriba y otras veces por el agua presente en las grietas del macizo (Cruden & Varnes, 1996). Los basculamientos producen caídas o deslizamientos del material desplazado, dependiendo de la geometría del material en movimiento, la geometría de la superficie de separación y la orientación y extensión de las discontinuidades cinemáticamente activas (Cruden & Varnes, 1996). Los basculamientos varían de extremadamente lentos a extremadamente rápidos, algunas veces acelerando con el avance del movimiento (Cruden & Varnes, 1996).
  • 8. Fig. 3.4 Basculamiento de detritos, embalse Cachí, Costa Rica (Foto R. Mora). 3.3 DESLIZAMIENTOS. Un deslizamiento es un movimiento ladera abajo de una masa de suelos o rocas, que ocurre predominantemente a lo largo de una superficie de ruptura o zonas relativamente delgadas de intensa deformación cortante (Cruden & Varnes, 1996). Inicialmente, el movimiento no ocurre simultáneamente a lo largo de lo que, eventualmente, será la superficie de ruptura; el volumen de material desplazado se incrementa a partir de un área de falla local (Cruden & Varnes, 1996). Muchas veces, los primeros signos de movimiento son grietas en la superficie original del terreno, a lo largo de lo que más tarde será el escarpe principal del deslizamiento (Cruden & Varnes, 1996). El material desplazado puede deslizarse más allá de la punta de la superficie de ruptura, cubriendo la superficie original del terreno, la cual, a su vez, se convierte en superficie de separación (Cruden & Varnes, 1996). 3.3.1 Deslizamientos rotacionales. Estos deslizamientos se mueven a lo largo de superficies de ruptura curvas y cóncavas, con poca deformación interna del material (Cruden & Varnes, 1996). La cabeza del material desplazado se mueve verticalmente hacia abajo, mientras que la parte superior del material desplazado se bascula hacia el escarpe (Cruden & Varnes, 1996) (Fig. 3.5). Fig. 3.5 Deslizamiento rotacional (Skinner & Porter, 1992) El escarpe principal es prácticamente vertical y carente de soporte, por lo que se pueden esperar movimientos posteriores que causen retrogresión del deslizamiento a la altura de la corona (Cruden & Varnes, 1996) (Fig.3.6). Fig. 3.6 Escarpe principal, deslizamiento Tapezco, Costa Rica (Foto R. Mora). Ocasionalmente, los márgenes laterales de la superficie de ruptura pueden ser los suficientemente altos y empinados, como para producir deslizamientos hacia la zona
  • 9. de pérdida (Cruden & Varnes, 1996) (Fig. 3.7). Fig. 3.7 Margen lateral con deslizamientos hacia la zona de pérdida, deslizamiento Tapezco, Costa Rica (Foto R. Mora). El agua de escorrentía o un nivel freático somero pueden causar el desarrollo de lagunas en las secciones basculadas de mat erial desplazado, lo que a su vez, mantiene el material saturado y perpetúa el movimiento hasta que se desarrolle una pendiente suficientemente baja (Cruden & Varnes, 1996). 3.3.2 Deslizamientos translacionales. La masa se desplaza a lo largo de una superficie de ruptura plana o suavemente ondulada y superponiéndose a la superficie original del terreno (Cruden & Varnes, 1996) (Fig. 3.8). Fig. 3.8 Deslizamiento translacional de detritos (Skinner & Porter, 1992). La superficie de ruptura usualmente se orienta a lo largo de discontinuidades como fallas, juntas, planos de estratificación o el contacto entre roca y suelos residuales o transportados (Cruden & Varnes, 1996) (Figs. 3.8 y 3.9). Fig. 3.9 Deslizamiento translacional a lo largo de planos de estratificación (Skinner & Porter, 1992). En los deslizamientos translacionales la masa desplazada puede también fluir, convirtiéndose en un flujo de detritos ladera abajo (Cruden & Varnes, 1996) (Fig. 3.10). 3.4 SEPARACIONES LATERALES. La separación lateral se define como una extensión de una masa cohesiva de suelo o roca, combinada con la subsidencia del material fracturado en un material subyacente más blando (Cruden & Varnes, 1996) (Figs. 3.11 y 3.12). Fig. 3.11 Separación lateral en roca (Varnes, 1978). La superficie de ruptura no es una superficie de corte intenso y el proceso es el producto de la licuefacción o flujo (extrusión) del material más blando (Cruden & Varnes, 1996) (Fig. 3.13). Claramente estos movimientos son complejos, pero debido a que son muy
  • 10. comunes en ciertos materiales y situaciones geológicas, es mejor reconocerlos como un tipo separado de movimiento (Cruden & Varnes, 1996). Fig. 3.12 Separación lateral en suelo (Varnes, 1978). Fig. 3.13 Separación lateral por licuefacción durante el terremoto de Limón, Costa Rica (1991), carretera Limón-Cahuita (Foto R. Mora). 3.5 FLUJOS. Un flujo es un movimiento espacialmente continuo, en el que las superficies de corte son de corta duración, de espaciamiento corto y usualmente no se preservan; la distribución de velocidades en la masa que se desplaza se compara con la de un fluido viscoso (Cruden & Varnes, 1996) (Fig. 3.14). Fig. 3.14 Flujo de detritos (Skinner & Porter, 1992). El límite inferior de la masa desplazada puede ser una superficie, a lo largo de la cual se desarrolla un movimiento diferencial apreciable o una zona gruesa de corte distribuido (Cruden & Varnes, 1996). Es decir, existe una gradación desde deslizamientos a flujos, dependiendo del contenido de humedad, la movilidad y la evolución del movimiento (Cruden & Varnes, 1996). Los deslizamientos de detritos pueden convertirse en flujos de detritos extremadamente rápidos o avalanchas de detritos, en la medida en que el material desplazado pierde cohesión, aumenta de contenido de humedad o encuentra pendientes más fuertes (Cruden & Varnes, 1996) (Figs. 3.15, 3.16 y 3.17). Fig. 3.15 Flujo de lodo (Skinner & Porter, 1992).
  • 11. Fig. 3.16 Flujo de detritos, Arancibia, Costa Rica (Foto R. Mora). Fig. 3.17 Avalancha de detritos (Skinner & Porter, 1992). 3.6 REFERENCIAS BIBLIOGRAFICAS. Cruden, D.M. & Varnes, D.J., 1996: Landslide Types and Processes. In Turner, A.K. & Schuster, R.L., 1996: Landslides: Investigation and Mitigation. Special Report 247. Transportation Research Board, National Research Council. National Academy Press, Washington, D.C. 675 p.p. Skinner, B.J. & Porter, S.C., 1992: The Dynamic Earth: an introduction to physical geology. II edition, John Wiley & Sins, Inc. New York. 570 p.p. Varnes, D.J., 1978: Slope Movement: Types and Proceses. In Scuster & Krizek, 1978: Landslides: Analysis and Control. Special report 176. Transportation Research Board, Comisión on Sociotechnical Systems, National Research Council. National Academy of Sciences, Washungton, D.C. 234 p.p.
  • 12. DESLIZAMIENTO BAJO GAMBOA, COSTA RICA: LA POSIBILIDAD DE UNA ESTABILIZACIÓN RENTABLE. M. Sc. Rolando Mora Ch. Escuela Centroamericana de Geología Universidad de Costa Rica E-mail: rmorach@geologia.ucr.ac.cr INTRODUCCIÓN. Este trabajo involucra el estudio de las propiedades físicas y mecánicas de un macizo rocoso, en el cual se ha desarrollado un deslizamiento circular en roca, disparado por un laboreo errado de la ladera, con el fin de explotarla como cantera de materiales. Se ha realizado el análisis de la estabilidad de la ladera natural, así como el diseño de un talud seguro, basado en el movimiento estratégico de tierras y el manejo de las aguas subterráneas. El sitio se localiza en el lugar conocido como Bajo Gamboa, a 4 km al noroeste de San Pablo de León Cortés, Distrito San Andrés, Cantón de León Cortés, Provincia de San José, entre las coordenadas Lambert Costa Rica Norte (187000-188000)N y (528000- 530000)E (Fig. 1). Para el estudio de estabilidad se ha realizado una evaluación de campo del macizo rocoso, mediante la aplicación del método Rock Mass Rating (RMR) (Bieniawski, 1989), así como, ensayos de laboratorio para la determinación de las propiedades físicas. Nicaragua Panamá COSTA RICA Mar Caribe Océano Pacífico SAN JOSÉ 0 50 100 150 200 kilómetros San Pablo de León Cortés 189000 185000 529000 533000 Sitio de estudio Fig. 1 Localización del sitio de estudio. El factor de seguridad se ha calculado para ruptura por las discontinuidades del macizo rocoso y por falla circular. Este último tipo de ruptura se ha considerado ya que se trata de un macizo intensamente fracturado, en donde la superficie de ruptura puede ser definida por las discontinuidades, con la tendencia a seguir una trayectoria circular (Hoeck & Bray, 1981).
  • 13. MARCO GEOLÓGICO. Según Denyer y Arias (1991) el área de estudio se encuentra comprendida en la Formación Grifo Alto, la cual es una serie de rocas volcánicas andesíticas y piroclásticas, en las que se incluyen los depósitos ignimbríticos que afloran al este de la hoja topográfica Caraigres. En la figura 2 se aprecia la presencia de fallas geológicas importantes, como la falla Jaris y la falla de desplazamiento de rumbo que se localiza adyacente al área de estudio y que es la responsable del fracturamiento intenso que muestran las rocas silisificadas del sitio. Tm-bvc Tm-pn Tm-p Tm-ca Qal Sitio de estudio Fig. 2 Geología del área de estudio (modificado de Arias & Denyer, 1990) PROPIEDADES FÍSICAS, MECÁNICAS, Y CLASIFICACIÓN DEL MACIZO ROCOSO. Los resultados de las mediciones de las propiedades físicas y mecánicas del material que compone el macizo rocoso, se resumen en el cuadro 1. La resistencia a la compresión inconfinada indica que la roca intacta posee una resistencia alta, según la clasificación de Bieniawski (1989). Por otro lado, el Índice de Calidad de la Roca (RQD) es característico de macizos rocosos de calidad muy pobre, según Bieniawski (1989). Utilizando la información del cuadro 1, se obtiene que el macizo rocoso es de calidad muy pobre (V), su cohesión es menor de 100 kPa y su ángulo de fricción interna es menor de 15º, de acuerdo con la clasificación geomecánica de macizos rocosos RMR (Bieniawski, 1989). El criterio de ruptura empírico para macizos rocosos intensamente fracturados de Hoeck y Brown (1981) se ha utilizado para definir los parámetros de resistencia al corte del material. En la figura 3 se observa la relación entre el esfuerzo de ruptura axial (esfuerzo principal mayor) y la presión de confinamiento (esfuerzo principal menor) para el macizo rocoso intensamente fracturado del Bajo Gamboa, en esta figura la relación con la constante adimensional m=0.017 es la que se considera válida, la otra relación se ha incluido para efecto de comparación. En la figura 4 se observa la envolvente de Mohr para el mismo macizo rocoso, aquí la envolvente considerada como válida es la de constante igual a 0.03562, la
  • 14. restante se ha incluído con fines de comparación. El macizo rocoso presenta cuatro sistemas de discontinuidades, con espaciamientos muy cortos y orientados desfavorablemente, lo cual lo torna sumamente susceptible a presentar fenómenos de deslizamiento. Cualquier corte vertical en este macizo producirá problemas de estabilidad, debido a la orientación (a favor de la pendiente) y ángulo de buzamiento (58º) de uno de sus sistemas de discontinuidades. Cuadro 1: Propiedades físicas y mecánicas para la clasificación del macizo rocoso, deslizamiento Bajo Gamboa, Costa Rica. Resistencia a la compresión inconfinada 103 MPa RQD 20% Espaciamiento mínimo de discontinuidades 20 mm Condición de las discontinuidades Superficies poco ásperas, separación menor a 1 mm, paredes muy meteorizadas Condiciones generales del agua subterránea Completamente seca Orientación de la dirección estratigráfica y buzamiento de las discontinuidades Desfavorable Peso unitario de la roca 26.5 kN/m3 Cohesión del macizo rocoso < 100 kPa Ángulo de fricción del macizo rocoso < 15º 0 5 10 15 20 Esfuerzoaxial[MPa] 0 2 4 6 8 10 12 14 Esfuerzo confinante [MPa] Fig. 3 Criterio de ruptura empírico Macizo Rocoso Bajo Gamboa 0,0 1,0 2,0 3,0 4,0 5,0 6,0 Esfuerzocortante[MPa] 0,0 1,0 2,0 3,0 4,0 5,0 6,0 Esfuerzo normal [MPa] Fig. 4 Envolvente de Mohr Macizo Rocoso Bajo Gamboa ANÁLISIS DE ESTABILIDAD DE LA LADERA NATURAL. Para la ejecución del análisis de estabilidad de la ladera natural se ha utilizado la base topográfica presentada por Estrada (1993). Se ha seleccionado un perfil topográfico perpendicular a la orientación de las discontinuidades más desfavorables y a las curvas de nivel del terreno. Debido a que no se conoce con certeza la ubicación de la superficie freática, se ha realizado el análisis considerando la condición de flujo de agua subterránea número 1 de Hoeck y Bray
  • 15. (1981), es decir una ladera natural completamente drenada. Bajo esta condición el factor de seguridad de la ladera natural, según el método de análisis, se puede observar en el cuadro 2 y la figura 5. Los tres factores de seguridad se encuentran muy cercanos a la unidad, lo cual indica que la ladera se encuentra en una condición precaria de estabilidad, esto considerando la ladera como completamente drenada. Si se considera otra situación para el agua subterránea, con certeza los factores de seguridad pueden alcanzar valores incluso inferiores a la unidad. Cuadro 2: Factores de seguridad de la ladera natural según el método de análisis. Método de análisis Factor de sefuridad Ordinario o de Fellenius 1.033 Simplificado de Bishop 1.096 Simplificado de Jambu 1.016 Ordinario o de Fellenius: se desprecian las fuerzas entre dovelas Simplificado de Bishop: las fuerzas resultantes entre dovelas son horizontales. No se consideran las fuerzas de corte entre dovelas Simplificado de Jambu: las fuerzas resultantes entre dovelas son horizontales. Se utiliza un factor de corrección empírico para considerar las fuerzas de corte entre dovelas Fig. 5 Análisis de estabilidad de la ladera natural, utilizando los métodos: Ordinario o de Fellenius, Simplificado de Bishop y Simplificado de Jambu. Escala vertical y horizontal: 1:2000. Perfi: N57ºE 1.096 1.016 1 . 0 3 3
  • 16. Durante el trabajo de campo se encontraron evidencias de que la ladera se encuentra en un proceso de desestabilización acelerado, esto debido a la tala de la vegetación y a la extración de materiales utilizando cortes verticales. Se observan grietas y escarpes de 0.5 a 1.0 m de altura y que establecen la posibilidad de un deslizamiento de grandes proporciones, el cual puede involucrar las propiedades vecinas y poner en peligro las tomas del acueducto de la comunidad de San Antonio. ESTABILIZACIÓN DE LA LADERA MEDIANTE EXPLOTACIÓN DEL MATERIAL Y MANEJO DEL AGUA SUBTERRANEA. El talud propuesto por Estrada (1993) para la exlotación del material ha sido analizado, considerando rupturas por las diaclasas y por falla general. Este talud es de 10 m de altura, con un ángulo de inclinación de 60º y bermas de 20 m de ancho. Esta configuración es estable por sí sola, pues el factor de seguridad calculado para rupturas por las diaclasas es de 2.356 y para ruptura general de 2.444 (Fig. 6). Por otra parte, si se considera el empleo de esta configuración para toda la ladera, se puede producir una falla generalizada del talud, pues el factor de seguridad sería inferior a 1.0. Perfil: N57ºE. Factor de seguridad mínimo: 2.444 (Simplificado de Bishop) Fig. 6 Estabilidad del talud propuesto para explotación por Estrada (1993). Se han realizado varios diseños para tratar de elevar el factor de seguridad, considerando la remoción de material y el drenaje del agua subterránea. El diseño que presenta características aceptables desde el punto de vista de su estabilidad es el de la figura 7, donde se ha tomado en cuenta que se trata de un talud para la explotación de materiales en una cantera y no representa una amenaza alta desde el punto de vista de pérdida de vidas y pérdidas económicas. El factor de seguridad es de 1.20, considerando que el agua subterránea se debe mantener, al menos, en la posición sugerida por el autor (Fig. 7). Factor de seguridad mínimo: 1.20 Método: Simplificado de Jambu Distancia horizontal [m] 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 Distanciavertical[m](x1000) 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 Fig. 7 Perfil (N57ºE ) de estabilización propuesto 23 24
  • 17. Para ejecutar esta obra de estabilización se debe considerar que los trabajos involucran, al menos, una distancia de 50 m en la propiedad colindante al suroeste y el estudio de las condiciones del agua subterránea para el diseño de las obras de drenaje apropiadas. Dentro de las posibles soluciones para el drenaje se pueden contemplar las galerías de infiltración, los drenajes subhorizontales y los pozos. BENEFICIOS DEL PROCESO DE ESTABILIZACIÓN DE LA LADERA. La estabilización de la ladera estudiada evitaría que el proceso involucre más área, en los alrededores del sitio y además, se eliminaría la amenaza de destrucción de las tomas del acueducto de la comunidad de San Antonio. Por otro lado, si se considera la resistencia a la compresión inconfinada del material (104 MPa) y que el mismo se encuentra intensamente fracturado, se habre la posibilidad para que sea utilizado como material de construcción, o como agregado de concreto y asfalto. La modificación del perfil de la ladera involucra un área de 5300 m 2 por metro lineal. Si se considera que el tramo por estabilizar tiene 250 m de largo, entoces se puede hablar de un volumen explotable aproximado de 1325000 m 3 . Ahora bien, si el precio del material en banco se considera como de ¢ 300 por metro cúbico, quiere decir que se cuenta potencialmente con ¢ 397.5 millones para ser extraídos. CONCLUSIONES. La falla de desplazamiento de rumbo, que se localiza adyacente al área de estudio, es la responsable del fracturamiento intenso que muestran las rocas silisificadas del sitio. La resistencia a la compresión inconfinada indica que la roca intacta posee una resistencia alta, mientras que el Índice de Calidad de la Roca (RQD) es característico de macizos rocosos de calidad muy pobre. Lo anterior conduce a considerar que la cohesión del macizo es menor de 100 kPa y su ángulo de fricción interna es menor de 15 El macizo rocoso presenta cuatro sistemas de discontinuidades, con espaciamientos muy cortos y orientados desfavorablemente, lo cual lo torna sumamente susceptible a presentar fenómenos de deslizamiento. Cualquier corte vertical en este macizo producirá problemas de estabilidad, debido a la orientación (a favor de la pendiente) y ángulo de buzamiento (58 ) de uno de sus sistemas de discontinuidades. El factor de seguridad de la ladera se encuentra muy cercano a la unidad, lo cual indica que la misma posee una condición precaria de estabilidad, esto considerandola ladera como completamente drenada. Si se toma en cuenta otra situación para el agua subterránea, con seguridad los factores de seguridad pueden alcanzar valores incluso inferiores a la unidad. Durante el trabajo de
  • 18. campo se encontraron evidencias de que la ladera se encuentra en un proceso de desestabilización acelerado, esto debido a la tala de la vegetación y a la extración de materiales utilizando cortes verticales, además se ha establecido la posibilidad de un deslizamiento de grandes proporciones, el cual puede involucrar las propiedades vecinas y poner en peligro las tomas del acueducto de la comunidad de San Antonio. El factor de seguridad de la ladera modificada es de 1.20, considerando que el agua subterránea se debe mantener en la posición sugerida por el autor. Para ejecutar esta obra de estabilización se debe considerar que los trabajos involucran, al menos, una distancia de 50 m en la propiedad colindante al suroeste y el estudio de las condiciones del agua subterránea para el diseño de las obras de drenaje apropiadas. La estabilización de la ladera evitaría que el proceso involucre más área, en los alrededores del sitio y se eliminaría la amenaza de destrucción de las tomas del acueducto de la comunidad de San Antonio. Por otro lado, se habre la posibilidad para que el sitio sea utilizado como fuente de materiales para la construcción, o de agregados de concreto y asfalto. Se puede decir que el volumen de material explotable comprende aproximadamente 1325000 m 3 y si el precio del material en banco se considera como de ¢ 300 por metro cúbico, quiere decir que se cuenta potencialmente con ¢ 397.5 millones para ser extraídos. La suma anterior justifica financieramente la ejecución de las obras de estabilización. BIBLIOGRAFIA. Bieniawski, Z.T., 1989: Engineering Rock Mass Classifications. John Wiley & Sons. New York. 251 p.p. Denyer, P. y Arias, O., 1991: Estratigrafía de la región central de Costa Rica. Revista Geológica de América Central, 12: 1-59 p. Estrada, E., 1993: Programa inicial de explotación, informe técnico-financiero. Geología-Evaluación, Exp. 2327. Informe inédito. 16 p. Hoek, E. & Bray, J.W., 1981: Rock Slope Engineering. The Institution of Mining and Metallurgy. Revised third edition. London. 358 p.p.
  • 19. ZONIFICACIÓN DE LA SUSCEPTIBILIDAD AL DESLIZAMIENTO: RESULTADOS OBTENIDOS PARA LA PENÍNSULA DE PAPAGAYO MEDIANTE LA MODIFICACIÓN DEL MÉTODO MORA- VAHRSON (MORA, R. ET AL., 1992). M. Sc. Rolando Mora Chinchilla Geól. Jeisson Chaves Gamboa Geól. Mauricio Vásquez Fernández Sección Geotecnia e Hidrogeología Escuela Centroamericana de Geología Universidad de Costa Rica E-mail: rmorach@geologia.ucr.ac.cr 1. INTRODUCCIÓN. La metodología para la determinación “a priori” de la amenaza de deslizamientos Mora-Vahrson (Mora, R. et al., 1992) se ha modificado con la inclusión del ángulo de la pendiente del terreno, en sustitución del índice de relieve relativo, y la consideración de los parámetros de resistencia al corte de suelos y la clasificación de macizos rocosos de Bieniawski (1989) en el parámetro de susceptibilidad litológica. También, se ha considerado una clasificación más simplificada del grado de amenaza, el cual se propone se denomine Susceptibilidad al Deslizamiento. De esta manera, la nueva metodología para el estudio de la susceptibilidad al deslizamiento se ha denominado método Mora-Vahrson-Mora (MVM). Esta metodología permite obtener una zonificación de la susceptibilidad del terreno a deslizarse, mediante la combinación de la valoración y peso relativo de diversos indicadores morfodinámicos, la cual es sencilla de implementar en un sistema de información geográfica (SIG). Se pretende dividir el área estudiada en sectores de comportamiento similar y proveer una base para entender las características de cada uno de estos sectores. La metodología es simple, fácilmente recordada y entendible; cada uno de sus factores es claro y la terminología utilizada es ampliamente aceptada; incluye los factores más significativos desde el punto de vista de la inestabilidad de laderas; se basa en parámetros que pueden determinarse de manera rápida y barata en el campo y en la oficina, así como, en valoraciones que incluyen el peso relativo de los parámetros. Los mapas generados con esta metodología se utilizan y aplican como instrumentos en la toma de decisiones para los procesos de planificación del uso del terreno, explotación de recursos naturales y el desarrollo de infraestructura, urbanismo y líneas vitales (Mora, R. et al., 1992). El resultado de su aplicación será una mejor comprensión de los fenómenos naturales en el área de estudio, lo cual incide en su desarrollo eficiente y duradero (Mora, R. et al., 1992). La metodología permite desarrollar una aproximación del grado de susceptibilidad al deslizamiento de la región estudiada y de los fenómenos que influencian mayormente esta condición (Mora, R. et al., 1992). Es valiosa en la identificación de áreas críticas y útil en la orientación de prioridades en cuanto al
  • 20. destino de los recursos destinados hacia estudios geotécnicos de detalle (Mora, R. et al., 1992). Bajo ninguna circunstancia, esta metodología debe sustituir los estudios geotécnicos de campo y laboratorio, necesarios para el diseño y concepción de las obras civiles y sus complementos de protección y mitigación correspondientes (Mora, R. et al., 1992). Adicionalmente, fuera de un concepto general, la metodología tampoco es capaz de pronosticar el tipo de deslizamiento que podría presentarse. 2. FACTORES Y PARÁMETROS UTILIZADOS POR LA METODOLOGÍA MVM. La metodología se aplica mediante la combinación de varios factores y parámetros, los cuales se obtienen de la observación y medición de indicadores morfodinámicos y su distribución espacio-temporal. En este trabajo se utilizó una base topográfica 1:20000, con una resolución de 100 m 2 , es decir un tamaño de píxel de 10x10 m. La combinación de los factores y parámetros se realiza considerando que los deslizamientos ocurren cuando en una ladera, compuesta por una litología determinada, con cierto grado de humedad y con cierta pendiente, se alcanza un grado de susceptibilidad (elementos pasivos) (Mora, R., Vahrson, W. & Mora, S., 1992). Bajo estas condiciones, los factores externos y dinámicos, como son la sismicidad y las lluvias intensas (elementos activos), actúan como factores de disparo que perturban el equilibrio, la mayoría de las veces precario, que se mantiene en la ladera (Mora, R. et al., 1992). Es así como se considera que el grado de susceptibilidad al deslizamiento es el producto de los elementos pasivos y de la acción de los factores de disparo (Mora, R. et al., 1992): H = EP * D donde: H: grado de susceptibilidad al deslizamiento, EP: valor producto de la combinación de los elementos pasivos, y D: valor del factor de disparo. Por su parte el valor de los elementos pasivos se compone de los siguientes parámetros (Mora, R. et al., 1992): EP = Sl * Sh * Sp donde: Sl : valor del parámetro de susceptibilidad litológica, Sh : valor del parámetro de humedad del terreno, y Sp : valor del parámetro de la pendiente. El factor de disparo se compone de los siguientes parámetros (Mora, R. et al., 1992): D = Ds + Dll donde: Ds : valor del parámetro de disparo por sismicidad, y
  • 21. Dll : valor del parámetro de disparo por lluvia. Sustituyendo los parámetros apropiados, la ecuación original se puede expresar como (Mora, R. et al., 1992): H = (Sl * Sh * Sp) * (Ds + Dll) De esta ecuación se pueden derivar las relaciones (Mora, R. et al., 1992): Hs = (Sl * Sh * Sp) * (Ds) Hll = (Sl * Sh * Sp) * (Dll) donde: Hs : susceptibilidad al deslizamiento por sismicidad, y Hll : susceptibilidad al deslizamiento por lluvias. Para los resultados de la combinación de todos los factores no se puede establecer una escala de valores única, pues los mismos dependen de las condiciones de cada área estudiada. Por este motivo, se sugiere dividir el rango de valores obtenidos, para el área de estudio, en cinco clases de susceptibilidad y asignar los calificativos que se presentan en el cuadro 1. El calificativo de susceptibilidad es una representación cuantitativa de los diferentes niveles de amenaza, que muestra solamente el rango de amenaza relativa en un sitio en particular y no la amenaza absoluta. Se sugiere que la asignación de rangos se efectúe con la utilización de un histograma de los resultados de la combinación de parámetros. Cuadro 1: Clasificación de la susceptibilidad al deslizamiento. Clase Calificativo de susceptibilidad al deslizamiento Característica I Muy baja Sectores estables, no se requieren medidas correctivas. Se debe considerar la influencia de los sectores aledaños con susceptibilidad de moderada a muy alta. II Baja Sectores estables que requieren medidas correctivas menores, solamente en casos especiales. Se debe considerar la influencia de los sectores aledaños con susceptibilidad de moderada a muy alta. III Moderada No se debe permitir la construcción de infraestructura si no se mejora la condición del sitio IV Alta Probabilidad de deslizamiento alta en caso de sismos de magnitud importante y lluvias de intensidad alta. Se deben realizar estudios de detalle y medidas correctivas que aseguren la estabilidad del sector, en caso contrario, deben mantenerse como áreas de protección. V Muy alta Probabilidad de deslizamiento muy alta en caso de sismos de magnitud importante y lluvias de intensidad alta. Se deben realizar estudios de detalle y medidas correctivas que aseguren la estabilidad del sector, en caso contrario, deben mantenerse como áreas de protección. Se debe enfatizar en que esta clasificación relativa de la susceptibilidad, se basa en influencia que tienen las diferentes
  • 22. condiciones examinadas en un área específica; es decir, las áreas de susceptibilidad determinadas para un sitio son válidas únicamente para este sitio. Condiciones similares, encontradas fuera del sitio, pueden producir un resultado diferente por una pequeña diferencia en alguno de los factores. 3. DESCRIPCIÓN DE LOS PARÁMETROS DE LA METODOLOGÍA MVM. 3.1 PARÁMETRO DE LA PENDIENTE (Sp). Este parámetro utiliza las clases de pendiente de van Zuidam (1986), con las cuales se describen los procesos característicos y esperados, y las condiciones del terreno, así como una leyenda de colores sugerida por el mismo autor (Cuadro 2). Las clases de pendientes pueden coincidir con los sectores críticos, donde los procesos de deslizamiento son dominantes (van Zuidam, 1986). 3.2 PARÁMETRO DE SUSCEPTIBILIDAD LITOLÓGICA (Sl). Los tipos de suelos y rocas juegan un papel preponderante en el comportamiento dinámico de las laderas (Mora, R. et al., 1992). Cuadro 2: Clases de pendientes, condiciones del terreno, colores sugeridos y valoración del parámetro Sp. Clase de pendiente [º] [%] Condiciones del terreno Color Valor de Sp 0-2 0-2 Planicie, sin denudación apreciable Verde oscuro 0 2-4 2-7 Pendiente muy baja, peligro de erosión Verde claro 1 4-8 7-15 Pendiente baja, peligro severo de erosión Amarillo 2 8-16 15-30 Pendiente moderada, deslizamientos ocasionales, peligro de erosión severo Naranja 3 16-35 30-70 Pendiente fuerte, procesos denudacionales intensos (deslizamientos), peligro extremo de erosión de suelos Rojo claro 4 35-55 70-140 Pendiente muy fuerte, afloramientos rocosos, procesos denudacionales intensos, reforestación posible Rojo oscuro 5 > 55 > 140 Extremadamente fuerte, afloramientos rocosos, procesos denudacionales severos (caída de rocas), cobertura vegetal limitada Morado 6 La composición mineralógica, la capacidad de retención de humedad, los espesores y grado de meteorización, el estado de
  • 23. fracturamiento, el ángulo de buzamiento, la posición y variación de los niveles freáticos, etc., influyen claramente en la estabilidad o inestabilidad de las laderas (Mora, R. et al., 1992). La evaluación de este parámetro puede realizarse según las sugerencias de Mora, R. et al., (1992), sin embargo, si se cuenta con descripciones de los macizos rocosos y la evaluación de propiedades geotécnicas de suelos, se recomienda utilizar los cuadros 3 y 4. El cuadro 3 se ha confeccionado con la utilización de la clasificación de macizos rocosos RMR (Bieniawski, 1989), y el cuadro 4 con la modificación del cuadro propuesto por Miles & Keafer (2002). Cuadro 3: Valoración del parámetro susceptibilidad litológica, caso macizos rocosos según RMR (Bieniawski, 1989). Valoración RMR Número de clase RMR Descripción RMR Valoración del parámetro Sl < 20 I Muy pobre 5 21-40 II Pobre 4 41-60 III Medio 3 61-80 IV Bueno 2 81-100 V Muy Bueno 1 Cuadro 4: Valoración del parámetro susceptibilidad litológica, caso suelos Ángulo de fricción efectiva Cohesión efectiva [kPa] Descripción Valoración del parámetro S [grados] Sl 0-15 0-10 Muy bajo 5 15-20 10-15 Bajo 4 20-25 15-20 Medio 3 25-30 20-25 Alto 2 > 30 > 25 Muy alto 1 3.3 PARÁMETRO DE HUMEDAD DEL TERRENO (Sh). En este caso se recurre a los promedios mensuales de precipitación, efectuando con ellos un balance hídrico simplificado, en donde se asume una evapotranspiración potencial de 125 mm/mes, por lo tanto, precipitaciones mensuales inferiores a 125 mm no conducen a un aumento de la humedad del terreno, mientras que una precipitación entre 125 y 250 mm si la incrementa, y precipitaciones mensuales superiores a 250 mm conducen a una humedad del suelo muy alta (Mora, R. et al., 1992). Seguidamente, a los promedios mensuales se les asignan los valores del cuadro 5 y se efectúa la suma de estos valores para los doce meses del año, con lo que se obtiene un valor que puede oscilar entre 0 y 24 unidades. El resultado refleja los aspectos relacionados con la saturación y la distribución temporal de humedad en el terreno (Mora, R. et al., 1992). La valoración del parámetro se presenta en el cuadro 6. Cuadro 5: Valores asignados a los promedios mensuales de lluvia (Mora, R. et al., 1992). Promedio de precipitación mensual [mm] Valor asignado
  • 24. < 125 0 125-250 1 >250 2 Cuadro 6: Valoración del parámetro humedad del terreno (Sh) (Mora, R. et al., 1992). Suma de valores asignados a cada mes Descripción Valoración del parámetro Sh 0-4 Muy bajo 1 5-9 Bajo 2 10-14 Medio 3 15-19 Alto 4 20-24 Muy alto 5 3.4 PARÁMETRO DE DISPARO POR SISMICIDAD Ds. La sismicidad es el evento natural que ha causado la mayor destrucción por deslizamientos en Costa Rica (Mora, R. et al., 1992). Se ha observado que el potencial de generación de deslizamientos por actividad sísmica puede correlacionarse con la escala de intensidades Mercalli-Modificada (Mora, R. et al., 1992). En caso de contar con datos sobre aceleraciones pico (PGA), se ha utilizado la relación de Trifunac y Brady (1975), para establecer los valores correspondientes del parámetro de disparo por sismicidad (Ds) (Cuadro 7). Existen otras relaciones entre intensidad y aceleración que pueden ser utilizadas, a criterio de las personas que pongan en práctica esta metodología. Cuadro 7: Valoración del parámetro de disparo por sismicidad Ds. Intensidad Mercalli- Modificada Aceleración pico (%g) (Trifunac & Brady, 1975) Valoración del parámetro Ds I 0.3-0.6 1 II 0.6-1.1 2 III 1.1-2.2 3 IV 2.2-4.5 4 V 4.5-8.9 5 VI 8.9-17.7 6 VII 17.7-35.4 7 VIII 35.4-70.5 8 IX 7.5-140.8 9 X 140.8-280.8 10 XI 280.8-560.4 11 XII > 560.4 12 3.5 PARÁMETRO DE DISPARO POR LLUVIA Dll. En este parámetro se consideran las intensidades de lluvias potencialmente generadoras de deslizamientos, se utiliza la lluvia máxima en 24 horas con un período de retorno de 100 años, aplicando la distribución de valores extremos Gumbel tipo I o LogPearson tipo III a series temporales con más de 10 años de registro (Mora, R. et al., 1992). En el cuadro 8 se aprecia la valoración del parámetro Dll. Cuadro 8: Valoración del parámetro de disparo por lluvias Dll (Mora, R. et al., 1992). Lluvia máxima en 24 horas, período de retorno 100 años [mm] Descripción Valor del parámetro Dll.
  • 25. < 100 Muy bajo 1 100-200 Bajo 2 200-300 Medio 3 300-400 Alto 4 > 400 Muy alto 5 4. RESULTADOS PARA LA PENÍNSULA DE PAPAGAYO. El área de estudio comprende la Península de Papagayo, en la Provincia de Guanacaste, Costa Rica (Fig. 1). La Península de Papagayo se caracteriza por presentar una predominancia de pendientes de fuertes a muy fuertes (51% del área), según la clasificación de van Zuidam (1986), las cuales se asocian con la forma del terreno característica del lugar: los acantilados costeros. En un segundo plano aparecen las planicies y pendientes muy bajas (26% del área), asociadas a planicies ignimbríticas, sectores de manglar y playas. La figura 2 muestra la clasificación de pendientes y su valoración de acuerdo con el método MVM. En el cuadro 9 se aprecia el porcentaje de área cubierta por cada clase de pendiente. Cuadro 9: Porcentaje de área por clase de pendiente. Clase de pendiente Área [km2 ] % de área Planicie 2.21 16.05 Pendiente muy baja 1.35 9.80 Pendiente baja 1.88 13.65 Pendientemedia 3.35 24.33 Pendiente fuerte 3.72 27.02 Pendiente muy fuerte 1.17 8.50 Pendiente extremadamente fuerte 0.09 0.65 La Geología de la península se caracteriza por la presencia de rocas ígneas y sedimentarias, las cuales se han correlacionado con formaciones previamente descritas o se han descrito como unidades
  • 26. informales. Cada unidad se ha clasificado de acuerdo al RMR (Bieniawski, 1989) y se le ha asignado su valoración de acuerdo con el parámetro de susceptibilidad litológica (Fig. 3 y cuadro 10). Cuadro 10: Clasificación y valoración de las unidades litológicas. Unidad geológica Litología RMR Sl Depósitos Recientes Coluvios, aluviones, arenas - Bajo (4) Unidad Papagayo Ignimbritas Medio (54) Medio (3) Unidad Coyol Areniscas, ignimbritas conglomerados, tobas, Medio (41-60) Medio (3) Unidad Nacascolo Ignimbritas Medio (55-60) Medio (3) Unidad Iguanita Areniscas Medio (59) Medio (3) Formación Descartes Calcilutitas Pobre (37) Bajo (4) Intrusivos Gabros y plagiogranitos Pobre (21-40) Bajo (4) Complejo de Nicoya Basaltos Pobre (35) Bajo (4) En la península el desarrollo de suelos es sumamente limitado, más bien, los problemas de estabilidad están asociados a deslizamientos en roca, por lo cual no se han realizado estudios tendientes a determinar parámetros de resistencia al corte de suelos. El parámetro de humedad del terreno se ha evaluado con los datos de la estación Playas del Coco, la cual pertenece al Servicio Nacional de Riego y Avenamiento (SENARA). Esta estación cuenta con una longitud de registro de 21 años y es la más cercana a la Península de Papagayo. No se han considerado datos de otras estaciones, pues las mismas se encuentran bastante alejadas y no presentan la influencia del clima costero. En el cuadro 11 se resume la información correspondiente a los promedios mensuales de la estación y los valores asignados a cada mes. La clasificación final del parámetro de humedad es de 6, lo cual indica una influencia baja del mismo en lo que respecta a la susceptibilidad al deslizamiento. Este valor se tomará como constante para toda la península, pues como se menciona anteriormente, no se cuenta con datos de estaciones más cercanas. El parámetro de disparo por sismo se ha evaluado considerando la intensidad (MM) máxima reportada para la península, la cual es de VIII y corresponde con un evento sísmico de magnitud 7.5, ocurrido en 1916 y localizado frente al Golfo de Papagayo (Barquero, 1994). Por lo anterior, el factor de
  • 27. disparo por sismo conduce a una valoración del parámetro Ds de 8. Cuadro 11: Valoración del parámetro humedad del terreno (Sh) Mes Promedio mensual [mm] Valor Asignado ENERO 0 0 FEBRERO 0 0 MARZO 0.9 0 ABRIL 4.5 0 MAYO 163.4 1 JUNIO 246 1 JULIO 114.2 0 AGOSTO 160.9 1 SEPTIEMBRE 326.4 2 OCTUBRE 234.3 1 NOVIEMBRE 57.4 0 DICIEMBRE 8.2 0 Total: 6 Clasificación del parámetro de humedad: 2 (bajo) Para evaluar el parámetro de disparo por lluvia (Dll) se utilizaron los datos de la estación Playas del Coco, tomando los valores extremos anuales de lluvia en 24 horas y aproximando las distribuciones de valores extremos LogPearson tipo III y Gumbel tipo I (Linsley et al., 1986). Los resultados son muy similares para las dos distribuciones, 187.7 mm y 188.4 mm respectivamente, con lo cual el parámetro Dll se establece en 2, es decir, la influencia del factor de disparo por lluvias es baja. 4.1. SUSCEPTIBILIDAD AL DESLIZAMIENTO POR INFLUENCIA DE LLUVIAS DE INTENSIDAD ALTA. Los resultados de la aplicación de la metodología MVM, en el caso de disparo por lluvias de intensidad alta, se observan en la figura 4. En esta misma figura se aprecia el uso recomendado del terreno, según el cuadro1, considerando únicamente la susceptibilidad al deslizamiento en caso de lluvias intensidad alta, otros conceptos pueden y deben ser incluidos para restringir el uso del terreno. Bajo estas condiciones se puede decir que el 51% del área de la península puede destinarse a desarrollo, el 25% a desarrollo controlado (sujeto a la prevención de deslizamientos) y el 24% a conservación.
  • 28. 4.2 SUSCEPTIBILIDAD AL DESLIZAMIENTO POR ACTIVIDAD SÍSMICA DE MAGNITUD IMPORTANTE. Los resultados de la aplicación de la metodología MVM, en el caso de disparo por sismos, se observan en la figura 5. En esta misma figura se aprecia el uso recomendado del terreno, según el cuadro1, considerando únicamente la susceptibilidad al deslizamiento en caso de sismos de magnitud importante, otros conceptos pueden y deben ser incluidos para restringir el uso del terreno. Bajo estas condiciones se puede decir que el 51% del área de la península puede destinarse a desarrollo, el 25% a desarrollo controlado (sujeto a la prevención de deslizamientos) y el 24% a conservación. Es decir, no existe diferencia significativa entre los resultados del análisis si se considera la actividad sísmica o las lluvias intensas, básicamente las áreas susceptibles son las mismas para cada factor de disparo. 4.3 SUSCEPTIBILIDAD AL DESLIZAMIENTO POR CONJUGACIÓN DE SISMOS DE MAGNITUD IMPORTANTE Y LLUVIAS DE INTENSIDAD ALTA. Los resultados de la aplicación de la metodología MVM, en el caso de disparo por lluvias de intensidad alta y sismos de magnitud importante se observan en la figura 6. En esta misma figura se aprecia el uso recomendado del terreno, según el cuadro1, considerando únicamente la susceptibilidad al deslizamiento en caso de lluvias intensidad alta conjugada con sismos de magnitud importante, otros conceptos pueden y deben ser incluidos para restringir el uso del terreno. Bajo estas condiciones se puede decir que el 51% del área de la península puede destinarse a desarrollo, el 25% a desarrollo
  • 29. controlado (sujeto a la prevención de deslizamientos) y el 24% a conservación. Es decir, el resultado coincide plenamente con los dos análisis realizados anteriormente, lo cual confirma que los sectores se han clasificado adecuadamente. 5. CONCLUSIONES. Los resultados, obtenidos mediante la aplicación de la metodología para determinar la susceptibilidad de los terrenos a deslizarse MVM, indican que un 25% del área se clasifica como de susceptibilidad media y un 24% como de susceptibilidad de alta a muy alta; el restante 51% se clasifica como de susceptibilidad de baja a muy baja. Como se confirma al aplicar tres factores de disparo individualmente, los sectores de diferente susceptibilidad coinciden para cada uno de los análisis, con lo cual se verifica el potencial generador de deslizamientos de cada uno de ellos, el cual está regido, principalmente, por la pendiente del terreno y el tipo de litología presente, considerando los factores de disparo como constantes para toda el área de estudio. El resultado de esta investigación debe ser utilizado como una herramienta para el diseño y ubicación de las diferentes obras de infraestructura del proyecto, sin sustituir los estudios geotécnicos de detalle, principalmente en las áreas de susceptibilidad de media a muy alta. Debido a que la intensidad sísmica máxima es de VIII (MM), la cual se debe a un terremoto de magnitud 7.5 frente al Golfo de Papagayo en 1916, se hace necesaria la consideración del parámetro de aceleración sísmica para el diseño de cualquier obra civil. 6. BIBLIOGRAFÍA Barquero, R. & Rojas, W., 1994: Catálogo de mapas de isosistas de temblores y terremotos de Costa Rica. Red Sismológica Nacional (ICE-UCR). San José, Costa Rica. (Informe inédito) Bieniawski, Z.T., 1989: Engineering Rock Mass Classifications. John Wiley & Sins, New York. 251 p.p.
  • 30. Linsley, R.K., Kohler, M.A. & Paulhus, J.L., 1986: Hidrología para Ingenieros. McGraw- Hill, México. 386 p.p. Miles, S.B. & Keafer, D.K., 2002: Seismic landslide hazard for the city of Berkeley, California. U.S. Department of The Interior, U.S. Geological Survey. (Documento no editable en Internet) Mora, R., Vahrson, W. & Mora, S., 1992: Mapa de Amenaza de Deslizamientos, Valle Central, Costa Rica. Centro de Coordinación para la Prevención de Desastres Naturales en América Central (CEPREDENAC). Trifunac, M.D. & Brady, A.G., 1975: On the correlation of seismic intensity scales with the peaks of the recorded ground motion. Bulletin Seismological Society of America, vol. 65. van Ziudam, R.A., 1986: Aerial photo- interpretation in terrain analysis and geomorphologic mapping. Smits Publishers, The Hague. 442
  • 31. ESTABILIDAD DE LAS MÁRGENES DE LA QUEBRADA IPÍS A SU PASO POR LA URBANIZACIÓN SETILLAL, IPÍS, GOICOECHEA, COSTA RICA. M. Sc Rolando Mora Ch. Escuela Centroamericana de Geología Universidad de Costa Rica E-mail: rmorach@geologia.ucr.ac.cr 1. INTRODUCCIÓN. La urbanización Setillal se ubica en la margen derecha de la quebrada Ipís, en lugar conocido como Setillal (Fig 1), el cual pertenece al cantón de Guadalupe, provincia de San José. Esta margen ha presentado procesos de deslizamiento en algunos sectores cercanos a las viviendas, motivo por el cual la Asociación de Desarrollo Comunal del lugar se ha preocupado por conocer el origen y posibles consecuencia de estos deslizamientos. Fig. 1 Localización del sitio de estudio. Este estudio comprende: la identificación de los materiales geológicos que componen las márgenes de la quebrada Ipís, la determinación del espesor de estos materiales mediante sondeos de penetración dinámicos, su caracterización física y mecánica, la implementación de un modelo de estabilidad de taludes, utilizando un sistema de información geográfica (SIG) y la formulación de recomendaciones tendientes a mitigar los efectos adversos del proceso de deslizamiento. Durante trabajo de campo, los ensayos de laboratorio y la formulación de recomendaciones se ha contado con la colaboración de los estudiantes de Geología Jasón Chávez y Mauricio Vázquez, y los estudiantes de Ingeniería Civil Esteban Acón y Luis Javier Villalobos. Estos estudiantes de la Universidad de Costa Rica, han apoyado el estudio mediante su participación en el Proyecto de Acción Social de la Escuela Centroamericana de Geología: Estabilidad de Taludes en Obras de Interés Social. También, se ha contado con el apoyo de la Asociación de Desarrollo Comunal de la localidad, la cual ha brindado un excelente soporte logístico al equipo de trabajo. 2. GEOLOGÍA. Según Denyer & Arias (1991) el sector de Setillal está formado por lahares y cenizas, provenientes de los edificios volcánicos de la Cordillera Volcánica Central. Estos materiales se acumularon en forma de avalanchas de lodo y ceniza (lahares) hacia finales del Pleistoceno-Holoceno (1.6 a 0.01 millones de años), rellenando una antigua topografía y dando origen a una nueva, bastante plana (Denyer & Arias, 1991). En el Valle Central los lahares tienen un espesor cercano a los 60 m, son muy heterogéneos, contienen fragmentos andesíticos angulares de más de 1 m y están inmersos en una matriz arenosa-arcillosa mal cementada (Denyer & Arias, 1991). Estos depósitos se encuentran interestratificados con aluviones y avalanchas volcánicas y son sobreyacidos por capas de ceniza, similares a las depositadas por las erupciones del volcán Irazú en 1963 (Denyer & Arias, 1991). Propiamente en el sitio de estudio, se ha identificado una capa de ceniza de un espesor cercano a los 3.2 m, la cual sobreyace a un lahar de 2.6 m de espesor y este a su ves se encuentra sobre un aluvión de espesor desconocido. Para determinar el espesor de la capa de ceniza y el lahar, se realizaron 4 sondeos dinámicos con la sonda DPL y se revisaron los archivos de perforaciones cercanas al sitio (Fig. 2). El resultado de los sondeos DPL se observa en la figura 3, y el cuadro 1 muestra un resumen de los espesores encontrados en las mismas perforaciones. La correlación entre las perforaciones se puede apreciar en la figura 4. En algunos sectores del sitio de estudio, es posible que el espesor de ceniza se encuentre sobreyacido por un relleno, mal compactado, de materiales removidos durante la construcción de la urbanización.
  • 32. Fig. 2 Localización de las perforaciones y pozos, utilizados en la estimación del espesor de los depósitos de cenizas. Fig. 3 Resultados de las perforaciones con el penetrómetro dinámico DPL. Cuadro 1: Espesores de los depósitos geológicos. Perforación Espesor de ceniza [m] Espesor del lahar [m] Profundidad del aluvión [m] DPL1 3.2 2.9 6.1 DPL2 3.3 2.4 5.7 DPL3 3.3 2.7 6.0 DPL4 3.1 2.5 5.6 Fig. 4 Interpretación de las perforaciones. En la figura 4 el nivel freático no aparece, debido a que no se detectó en ninguna de las perforaciones. Lo anterior se explica debido a que las capas de ceniza y el lahar se comportan como acuitardos, el agua que se infiltra, a través de estos materiales, recarga el acuífero constituido por el aluvión. Los depósitos que sobreyacen al aluvión pueden encontrarse muy cercanos a la saturación completa durante la temporada lluviosa, pero sin alcanzar a desarrollar un acuífero, debido a la permeabilidad sensiblemente más elevada del mismo aluvión. Por otro lado, la quebrada Ipís fluye sobre los materiales del aluvión y considerando que sus aguas presentan un contenido apreciablemente alto de detergentes y otras sustancias, así como depósitos de desechos sólidos, esta quebrada podría estar contribuyendo a deteriorar severamente la calidad del agua del acuífero. 3. PROPIEDADES FÍSICAS Y MECÁNICAS DE LAS CENIZAS. El depósito de cenizas se ha caracterizado física y mecánicamente, pues se considera que el mismo es el que presenta el mayor potencial de desestabilizarse en caso de actividad sísmica. El espesor del depósito de ceniza (Fig.5) se ha modelado utilizando la información de las perforaciones antes descritas y con la ayuda del sistema de información geográfica ILWIS 3.0 (ITC, 2001). Fig. 5 Espesor de los depósitos de cenizas. Un resumen de estas propiedades se aprecia en el cuadro 2. Las mismas se han obtenido mediante la ejecución de ensayos con muestras inalteradas, en el Laboratorio de Geotecnia e Hidrogeología, de la Escuela Centroamericana de Geología, Universidad de Costa Rica. 1 0 2 0 3 0 4 0 5 0 6 0 7 0 0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 6 .5 7 .0 P r o fu n d id a d [ m ] D P L 1 D PL 2 D P L 3 D P L 4 #degopesDPL10
  • 33. Cuadro 2: Propiedades físicas y mecánicas del depósito de cenizas. Propiedad Valor Gravedad específica 2.69 Peso unitario húmedo [kN/m3 ] 15.3 Peso unitario saturado [kN/m3 ] 16.0 Peso unitario seco [kN/m3 ] 9.8 Peso unitario de los sólidos [kN/m3 ] 26.4 Relación de vacíos 1.68 Porosidad [%] 63.0 Grado de saturación [%] 90.0 Contenido de humedad [%] 56.0 Cohesión [kPa] 6.0 Angulo de fricción [grados] 29.0 Los ensayos de propiedades físicas se realizaron en octubre de 2001, lo cual se refleja en un contenido de humedad del 56%, con el que el material alcanza un grado de saturación del 90%. El valor del peso unitario húmedo es muy cercano al del peso unitario saturado, esto también se debe al elevado grado de saturación del material en el campo. Los ensayos de propiedades mecánicas se realizaron a contenidos de humedad mayores, llevando las muestras a saturaciones cercanas al 100%. El estado de saturación completa se alcanza cuando el contenido de humedad asciende a 74.3%. 4. MODELO DETERMINÍSTICO DE ESTABILIDAD DE LADERAS. El modelo del talud infinito (Dunn, Andreson & Kiefer, 1980) se ha utilizado para calcular el factor de seguridad, bajo las siguientes condiciones: talud completamente saturado, pero sin desarrollar un acuífero de acuerdo con las condiciones hidrogeológicas previamente descritas; utilización de varios coeficientes de aceleración sísmica, los cuales varían de 0.1 de g a 0.3 de g, donde g es la aceleración de la gravedad en m/s 2 . El modelo del talud infinito es un modelo bidimensional, el cual utiliza un plano de ruptura infinitamente largo para describir la estabilidad de los taludes. La profundidad del plano de ruptura se ha establecido en el contacto del depósito de cenizas y el lahar. El grado de amenaza de deslizamiento se puede expresar con el factor de seguridad (FS), el cual es la relación entre las fuerzas que tienden a causar la falla del talud y aquellas que se oponen al mismo proceso. En el cuadro 3 se observan las consideraciones hechas con respecto al factor de seguridad y que se utilizan para clasificar los resultados del modelo aplicado, este cuadro se ha elaborado con base en los trabajos de Pack et al. (2001) y GCO (1984). La fórmula para calcular el factor de seguridad en condiciones estáticas es la siguiente (modificada de Hammond et al., 1992): FS= c + cos 2 2[(s(D-Dw)+((s-(w)Dw] tanΝ/(D(s sen2 cos 2) donde: c: cohesión del suelo [kPa], 2: pendiente del terreno, (s: peso unitario del terreno [kN/m 3 ], (w: peso unitario del agua [kN/m 3 ], D: espesor vertical del material [m], Dw: altura vertical del nivel freático dentro de la capa de cenizas y Ν: ángulo de fricción interna del material. Cuadro 3: Consideraciones respecto al factor de seguridad y que se utilizan en la clasificación de los resultados del modelo. Factor de seguridad Condición Característica Necesidad de medidas correctivas <= 0.5 Muy inestable Probabilidad de desestabilizarse superior al 50% en caso de una aceleración sísmica dada Imperante 0.5<FS<=1.0 Inestable Probabilidad de desestabilizarse inferior al 50% en caso de una aceleración sísmica dada Imperante 1.0<FS<=1.2 Quasi-estable No se debe permitir la construcción de infraestructura si no se mejora la condición del sitio Imprescindi ble 1.2<FS<=1.4 Moderadamente estable Se puede construir infraestructura con mejoras menores del sitio Necesario FS>1.4 Estable Sector estable No se requiere La ecuación anterior puede modificarse para considerar la aceleración sísmica, con lo que se obtiene la siguiente expresión:
  • 34. FS= c+((sD cos 2 2-D(s∀ sen2 cos2-(wDw cos 2 2)tanΝ/(D(s sen2 cos 2 + D(s∀ cos 2 2) donde: ∀: coeficiente de aceleración sísmica. Pack et al. (2001) proponen una forma adimensional de la ecuación del talud infinito, en la que introducen las siguientes expresiones: C= c/ D(s, m= Dw/ D y r= (w/ (s Estas expresiones se han utilizado para desarrollar una forma adimensional de la ecuación que considera la aceleración símica: FS= C+(cos 2 2-∀ sen2 cos2- mrcos 2 2)tanΝ/(sen2 cos2 + ∀ cos 2 2) Así mismo, para simplificar la ecuación y hacerla fácilmente implementable en un sistema de información geográfica como el ILWIS, se ha utilizado la siguiente expresión: A = C / cos 22 Al final, se obtiene la expresión adimensional utilizada en el cálculo del factor seguridad como: FS= A + (cos 2-∀ sen 2 - mr cos 2) tanΝ / (sen 2 + ∀ cos 2) 5. ANÁLISIS DE RESULTADOS. En las figuras 6 y 7 se observan los resultados del cálculo del factor de seguridad, para las diferentes aceleraciones sísmicas consideradas. De estas figuras se desprende que es evidente la posibilidad de deslizamiento, en ambas márgenes de la quebrada Ipís, en caso de actividad sísmica. Según Climent (2000) es práctica común el uso de cargas sísmicas efectivas para el diseño de obras de infraestructura, las cuales son una fracción del valor pico de la aceleración horizontal esperada. El factor 2/3 del espectro de repuesta elástico se considera como el mínimo para ser utilizado en todos los tipos de estructura (Climent, 2000). Tomando en cuenta que para el sitio de estudio la aceleración pico es de 0.27g para un período de recurrencia de 50 años (Climent, 2000), el mínimo a considerar es de 0.18g. Por lo anterior, en adelante, el análisis de resultados se ejecuta para un escenario de un factor de seguridad correspondiente con una aceleración sísmica de 0.20g. Fig. 6 Resultados del análisis de estabilidad de laderas para aceleraciones sísmicas de 0.10, 0.15 y 0.20 de g. En la figura 8 se aprecia un detalle del resultado del análisis de estabilidad, para una aceleración sísmica de 0.20g. Siguiendo lo expuesto en el cuadro 3 y la figura 8, podemos decir que en toda el área señalada como Quasi-estable, Inestable o Muy Inestable (amarillo, naranja y rojo respectivamente), se debe prohibir la construcción de cualquier tipo de obra de infraestructura. En estos sectores se deben emprender medidas correctivas, para evitar el deslizamiento del talud en caso de actividad sísmica de importancia. Si alguno de estos sectores se desliza, el resultado sería el desarrollo de un escarpe subvertical en las cercanías de las viviendas, el cual podría continuar desestabilizándose sin necesidad de ocurrencia sismos y pondría en peligro a las viviendas mismas y sus habitantes. Fig. 7 Resultados del análisis de estabilidad de laderas para aceleraciones sísmicas de 0.25 y 0.30 de g.
  • 35. Fig. 8 Detalle del resultado del análisis de estabilidad, para una aceleración sísmica de 0.20g. Los sectores considerados como Moderadamente Estables (verde) pueden comportarse adecuadamente durante un sismo, sin embargo, requieren de algunas medidas de estabilización menores, con el objetivo de alcanzar un factor de seguridad igual o mayor de 1.4. En general, las medidas correctivas involucran el movimiento de terrenos para suavizar el talud y la construcción de obras de retención, así como de drenajes. La realización de estas obras está condicionada por las limitaciones de espacio, el acceso difícil al talud y el costo de las mismas. El tránsito de vehículos livianos por las cercanías del talud, no afecta significativamente su estabilidad, pero la persona que desee circular por este sector, debe hacerlo bajo su propia responsabilidad. Por otro lado, el puesto de la Policía debe ser reubicado lo antes posible, pues se encuentra al borde de una de las secciones más inestables del talud. 6. PROTECCIÓN DE LAS MÁRGENES DE LA QUEBRADA IPÍS ANTE EROSIÓN Y SOCAVAMIENTO. Otro problema de inestabilidad de laderas se presenta si se considera la acción erosiva y de socavamiento, que ejerce la quebrada Ipís en sus márgenes. Este efecto se manifiesta con severidad durante la temporada lluviosa de nuestro país (Acón & Villalobos, 2002). En el cuadro 4 se resumen las principales características hidrológicas de la microcuenca de la quebrada Ipís, las cuales se obtienen del estudio de Acón & Villalobos (2002). Cuadro 4: Características hidrológicas de la microcuenca de la quebrada Ipís hasta la urbanización Setillal. Área [km2] 1.03 Coeficiente de escorrentía 0.25 Lluvia de 1 hora de duración, que puede esperarse una vez al año [mm] 34 Diferencia de elevación [m] 220 Longitud del cauce [km] 3.6 Tiempo de concentración [min.] 30 Lluvia máxima horaria, período de retorno 50 años [mm] 86 Tormenta de diseño [mm/h] 127.5 Caudal máximo probable, período de retorno 50 años [m3 /s] 9.11 Acón & Villalobos (2002) establecen que el ángulo de reposo del talud es de 40°, por lo cual, estos autores consideran que cualquier pendiente superior a este valor es vulnerable a la erosión y socavamiento. En la figura 9 se aprecian los sectores donde la protección de márgenes debe ser implementada. Acón & Villalobos (2002) recomiendan el uso de gaviones o suelo reforzado, con el propósito de brindar estabilidad y protección a los taludes, y resaltan las siguientes características de estas estructuras: - Admiten asentamientos
  • 36. - Cuentan con componentes flexibles - No se requieren fundaciones especiales - No requieren drenaje - Utilizan material localmente disponible - Funcionan como estructura de contención y protegen contra la erosión - No requieren de mano de obra especializada, ni equipos especiales - Su entrada en funcionamiento es inmediata - Pueden contar con paramentos verticales, en gradones o inclinados Fig. 9 Sectores donde se requiere la implementación de medidas de protección de márgenes y puntos de observación de Acón y Villalobos (2002). La gran cantidad de basura, acumulada a lo largo del cauce de la quebrada Ipís, impide el libre flujo y aumenta la vulnerabilidad ante la socavación (Acón & Villalobos, 2002). Los mismos autores enfatizan la necesidad de limpiar el cauce y mantenerlo exento de obstáculos. La redes de aguas servidas y pluviales descargan directamente a la quebrada, lo cual contribuye a socavar y erosionar el talud, así como, a aumentar los niveles de contaminación del recurso hídrico (Acón & Villalobos, 2002). En la figura 9 se aprecian algunos puntos, donde Acón & Villalobos (2002) han realizado las observaciones que aparecen en el cuadro 5. Cuadro 5: Recomendaciones brindadas por Acón & Villalobos (2002), para el manejo de aguas servidas y pluviales. Punto # Situación actual Recomendación 1 Salida de aguas pluviales clausurada Mantenerla en su estado actual 2 Salida de aguas pluviales y aguas negras, más la descarga del punto 1. Cuenta con disipador de energía Clausurar la salida de aguas servidas y conducirla a una planta de tratamiento. Mejorar la capacidad de reducción de velocidad del disipador, con la construcción de canal y gradas de concreto 3 Salida de aguas pluviales Construcción de un disipador de energía apropiado 4 Vivienda afectada por deslizamiento y tubería de aguas negras de la misma Reubicar de la vivienda y clausurar la tubería 5 Se ha construido una iglesia y la sede de Instituto Nacional de Aprendizaje (INA) Monitorear el comportamiento del talud y en caso necesario, proceder a su refuerzo y protección 7. CONCLUSIONES Y RECOMENDACIONES. En el sitio de estudio se ha identificado una capa de ceniza de un espesor cercano a los 3.2 m, la cual sobreyace a un lahar de 2.6 m de espesor y este a su ves se encuentra sobre un aluvión de espesor desconocido. El nivel freático no se detectó en ninguna de las perforaciones, debido a que las capas de ceniza y el lahar se comportan como acuitardos, el agua que se infiltra, a través de estos materiales, recarga el acuífero constituido por el aluvión. Los depósitos que sobreyacen al aluvión pueden encontrarse muy cercanos a la saturación completa durante la temporada lluviosa, pero sin alcanzar a desarrollar un acuífero, debido a la permeabilidad sensiblemente más elevada del mismo aluvión. La quebrada Ipís fluye sobre los materiales del aluvión y considerando que sus aguas presentan un contenido apreciablemente alto de detergentes y otras sustancias, así como depósitos de desechos sólidos, esta quebrada podría estar contribuyendo a deteriorar severamente la calidad del agua del acuífero. El depósito de cenizas se ha caracterizado física y mecánicamente, pues se considera
  • 37. que el mismo es el que presenta el mayor potencial de desestabilizarse en caso de actividad sísmica. Es evidente la posibilidad de deslizamiento, en ambas márgenes de la quebrada Ipís, en caso de actividad sísmica. En el área señalada como Quasi-estable, Inestable o Muy Inestable (amarillo, naranja y rojo respectivamente), se debe prohibir la construcción de cualquier tipo de obra de infraestructura. En estos sectores se deben emprender medidas correctivas, para evitar el deslizamiento del talud en caso de actividad sísmica de importancia. Si alguno de estos sectores se desliza, el resultado sería el desarrollo de un escarpe subvertical en las cercanías de las viviendas, el cual podría continuar desestabilizándose, sin necesidad de ocurrencia sismos y pondría en peligro a las viviendas mismas y sus habitantes. Los sectores considerados como Moderadamente Estables (verde) pueden comportarse adecuadamente durante un sismo, sin embargo, requieren de algunas medidas de estabilización menores, con el objetivo de alcanzar un factor de seguridad igual o mayor de 1.4. Las medidas correctivas involucran el movimiento de terrenos para suavizar el talud y la construcción de obras de retención, así como de drenajes. La realización de estas obras está condicionada por las limitaciones de espacio, el acceso difícil al talud y el costo de las mismas. El tránsito de vehículos livianos por las cercanías del talud, no afecta significativamente su estabilidad, pero la persona que desee circular por este sector, debe hacerlo bajo su propia responsabilidad. El puesto de la Policía debe ser reubicado lo antes posible, pues se encuentra al borde de una de las secciones más inestables del talud. Se deben considerar las recomendaciones de Acón & Villalobos (2002), en lo que respecta a limpiar el cauce de la quebrada Ipís y acatar sus observaciones en cada uno de los puntos, donde sugieren mejoras. 8. BIBLIOGRAFÍA. Acón, E. & Villalobos, L.J., 2002: Informe de zonas de peligro de socavación en margen sur de la quebrada Ipís, Setillal, Goicoechea. Informe de Trabajo Comunal Universitario (TCU). Proyecto Estabilidad de Taludes en Obras de Interés Social, Escuela Centroamericana de Geología, Universidad de Costa Rica. (Informe inédito) Climent, A. (Editor), 2000: Microzonificación Sísmica. NORAD-CEPREDENAC. San José, Costa Rica. 120 p.p. Denyer, P. & Arias, O., 1991: Estratigrafía de la región central de Costa Rica. Revista Geológica de América Central, 12: 1-59. Dunn, I.S., Anderson, L.R. & Kiefer, F.W., 1980: Fundamentals of Geotechnical Analysis. John Wiley & Sons, New York. 416 p.p. GCO, 1984: Geotechnical Manual for Slopes. Geotechnical Control Office. Engineering Development Department, Hong Kong. 295 p.p. Hamnond, C., Hall, D., Miller, S. & Swetik, P., 1992: Level I Stability Analysis (LISA), Documentation for Versión 2.0. General Technical Report INT-285, USDA, Forest Service Intermountain Research Station. ITC, 2001: Ilwis 3.0 Academic, Userr’s Guide. International Istitute for Aerospace Survey and Earth Sciences. Enschede, The Netherlands. 530 p.p. Pack, R.T., Tarboton, D.G. & Goodwin, C.N., 2001: A stability index approach to terrein stability hazard mapping, SINMAP User’s Manual. Canadian Forest Products Ltd. Forest Renewal B.C. 68 p.p.