Sistemas de representacion

234 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
234
On SlideShare
0
From Embeds
0
Number of Embeds
33
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Sistemas de representacion

  1. 1. SISTEMAS DE REPRESENTACION: -Sistema Octal El sistema de numeración octal es un sistema de numeración en base 8, una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y tienen el mismo valor que en el sistema de numeración decimal. -Sistema Hexadecimal Otro modo de manejar números binarios es con el uso del sistema de numeración hexadecimal. Este sistema es de base 16, lo que significa que para cada columna es posible escoger uno de entre 16 dígitos. Éstos son O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Para contar en el sistema hexadecimal se inicia en la primera columna a la izquierda del punto hexadecimal y se cuenta desde O hasta F. Una vez que se llena la primera columna, se pone en cero a ella y se suma uno a la segunda columna. Después del 18, 19, lA, 1B, 1C, 1D, lE, lF siguen el 20, 21, y así sucesivamente. Después del 9FFF sigue el A000, etc.
  2. 2. -Tabla de conversión entre decimal, binario, hexadecimal y octal Decimal Binario Hexadecimal octal 0 00000 0 0 1 00001 1 1 2 00010 2 2 3 00011 3 3 4 00100 4 4 5 00101 5 5 6 00110 6 6 7 00111 7 7 8 01000 8 10 9 01001 9 11 10 01010 A 12 11 01011 B 13 12 01100 C 14
  3. 3. 13 01101 D 15 14 01110 E 16 15 01111 F 17 16 10000 10 20 17 10001 11 21 18 10010 12 22 19 10011 13 23 20 10100 14 24 21 10101 15 25 22 10110 16 26 23 10111 17 27 30 11110 1E 36 31 11111 1F 37 32 100000 20 40 33 100001 21 41

×