• Like

Two Keys to Analytic Success: Cooperation, Collaboration

  • 285 views
Uploaded on

The Briefing Room with Robin Bloor and ParAccel …

The Briefing Room with Robin Bloor and ParAccel
Live Webcast on Feb. 19, 2013

Experienced analysts know there is no single platform that can handle all types of analytic processing efficiently. Invariably, data-driven organizations will use a variety of engines to refine their raw data into usable insights. There are several down sides to this heterogeneity, not the least of which is poor collaboration. But that's starting to change, as many companies focus on creative ways to foster analytical cooperation.

Check out the slides from this episode of The Briefing Room to hear veteran Analyst Dr. Robin Bloor explain why collaboration in the design and use of analytical applications can have wide-ranging impacts on an organization. He'll be briefed by John Santaferraro of ParAccel, who will tout his company's Cooperative Analytic Processing Architecture, designed to perform sophisticated deep analytics on large amounts of data quickly. CAPA can orchestrate the processing power of other engines in its ecosystem, including data warehouses and Hadoop implementations.

Visit: http://www.insideanalysis.com

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
285
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
8
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. The Briefing Room
  • 2. Welcome Host: Eric Kavanagh eric.kavanagh@bloorgroup.comTwitter Tag: #briefr The Briefing Room
  • 3. Mission !   Reveal the essential characteristics of enterprise software, good and bad !   Provide a forum for detailed analysis of today s innovative technologies !   Give vendors a chance to explain their product to savvy analysts !   Allow audience members to pose serious questions... and get answers!Twitter Tag: #briefr The Briefing Room
  • 4. FEBRUARY: Analytics March: OPERATIONAL INTELLIGENCE April: INTELLIGENCE May: INTEGRATIONTwitter Tag: #briefr The Briefing Room
  • 5. Analytics FROM THISTwitter Tag: #briefr The Briefing Room
  • 6. Analytics TO THISTwitter Tag: #briefr The Briefing Room
  • 7. Analyst: Robin Bloor  Robin Bloor is Chief Analyst at The Bloor Group robin.bloor@bloorgroup.comTwitter Tag: #briefr The Briefing Room
  • 8. ParAccel !   The ParAccel Analytic Platform: analytic database, extensibility framework, on demand integration and integrated analytics !   The Platform connects to existing infrastructures and industry standard BI tools !   Last month Gartner included ParAccel in its Magic Quadrant for Data Warehouse Database Management SystemsTwitter Tag: #briefr The Briefing Room
  • 9. John Santaferraro John Santaferraro is the Vice President of Solutions and Product Marketing at ParAccel. Prior to joining ParAccel, Santaferraro was an independent industry analyst in the business intelligence and analytics market. Before that he developed and executed a vertical market strategy for Hewlett Packards BI group, focusing on energy, communications, retail, healthcare and financial services; he was also instrumental in helping establish HP’s new BI business group with a combination of solutions, products and consulting. In 2000, John founded a marketing and sales consulting company, Ferraro Consulting, providing business acceleration strategy for technology companies.Twitter Tag: #briefr The Briefing Room
  • 10. ParAccel    and  Unconstrained  Analy1cs   Coopera1ve  Analy1c  Processing  Takes  Center  Stage  Copyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 10
  • 11. Driving  the  Analy/c  Revolu/on   Big  Data   New  Analy/cs   Corporate  Data   Descrip1ve   Machine  Data   Prescrip1ve   Conversa1onal  Data   Predic1ve   Open  Source  Data   Preventa1ve   New  Analy1c  Requirements   Speed   Sophis1ca1on   Interac1on   Next  Genera/on  Analy/c  Pla8orms  Copyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 11
  • 12. ParAccel  Enables  Coopera/ve  Analy/c  Processing   Business  Intelligence   Advanced     Analy/c     and  Repor/ng  Tools   Analy/cs   Applica/ons   ParAccel  Analy/c  Pla8orm   Enterprise   Hadoop   Data  Warehouse   On  Demand  Integra/on   Embedded   3rd  Party   Big  Data   Machine   Opera/onal   Streaming   Analy/cs   Info   Logs   Apps   Data   Data   Data   Provider  Copyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 12
  • 13. U/lize  the  Most  Dynamic  Analy/c  Interac/on   u  Most  extensive  interac1ve  connec1vity  to  other  plaHorms  and  data   ParAccel   ParAccel   ParAccel   Teradata  ODI   ODBC  ODI   Hadoop  ODI   module   module   module   ParAccel  Analy/c  Pla8orm   Enterprise   Hadoop   Data  Warehouse   On  Demand  Integra/on  Services   Embedded   3rd  Party   Big  Data   Machine   Opera/onal   Streaming   Analy/cs   Info   Logs   Apps   Data   Data   Data   Provider  Copyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 13
  • 14. U/lize  the  Most  Dynamic  Analy/c  Interac/on   u  Most  versa1le  integra1on  service  layer  for  an  analy1c  plaHorm   1.  Share  both  data  and  processes  in  both  direc1ons   2.  Transform  incoming  data  for  analy1c  performance   3.  Interact  with  many  programming  languages  (Java,  Python,  more)   4.  Persist  or  stream  data  through  analy1c  processing   5.  Rapidly  build  new  On  Demand  Integra1on  modules   ParAccel  Analy/c  Pla8orm   Enterprise   Hadoop   Data  Warehouse   On  Demand  Integra/on  Services   Embedded   3rd  Party   Big  Data   Machine   Opera/onal   Streaming   Analy/cs   Info   Logs   Apps   Data   Data   Data   Provider  Copyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 14
  • 15. Deliver  Analy/c  Services  for  En/re  Ecosystems   Business   Business   Process   Business   Process   Business   Big  Data   Big  Data   Embedded   Process   Embedded   Process   App   Big  Data   App   Big  Data   Analy/cs   Embedded   Analy/cs   Embedded   App   App   Analy/cs   Analy/cs   Business   Business   Business   Business   Process   Process   Process   Process   Big  Data   Big  Data   Big  Data   Big  Data   Embedded   Embedded   Embedded   Embedded   App   App   App   App   Analy/cs   Analy/cs   Analy/cs   Analy/cs   ParAccel  Analy/c  Pla8orm   Enterprise   Hadoop   Data  Warehouse   3rd  Party   Machine   Opera/onal   Streaming   Data   Info   Logs   Data   Data   Data   Data   Provider  Copyright 2012 ParAccel, Inc. 15
  • 16. ParAccel  Analy/c  Pla8orm   -­‐  Built  for  High  Performance,  Interac/ve  Analy/cs   On  Demand  Integra/on   Integrated  Analy/cs   Database   ParAccel  Analy/c  Pla8orm   Basic  Analy1cs   Teradata   Advanced  Analy1cs   Hadoop   Analy/c  Engine   Streaming  Data   Columnar   Applica1ons   Compression   Compiled   Parallel  Processing   SQL  Op1miza1on   Data  Scale   In-­‐Memory  Op/on  Available   Plan  Op1miza1on   Analy1c  Scale   Execu1on  Op1miza1on   User  Scale   Comms  Op1miza1on   Interac1ve  Scale   I/O  Op1miza1on  Copyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 16
  • 17. Run  the  Highest  Performing  Analy/c  Pla8orm   Parallel  Loading   1TB  per  node,  per  hour,  up  to  160  nodes,  without  complex  data  prepara1on   SQL  Op1miza1on   Extreme  SQL  Support  with  breakdown  into  2000  segments,  MPP  and  data-­‐aware   Planning  Op1miza1on   Choose  the  best  from  billions  of  compe1ng  plans  based  on  cos1ng  model   Execu1on  Op1miza1on   Final  op1miza1on  based  on  resources  available   In-­‐Database  Analy1cs   Store  and  run  SQL,  aggregate,  and  analy1c  func1ons  in  the  database  applica1on   Compiled  Queries   Queries  compiled  to  run  within  the  database  on  each  individual  node   Workload  Management   Establish  query  classes  for  long,  short,  and  interac1ve  queries   Parallel  Processing   Each  node  processes,  pipelines,  and  leverages  both  columnar  &  compression   Communica1on  Op1miza1on   Packet  delivery  op1mized  for  analy1cs,  low  overhead,  plus  Virtual  Hotwire   I/O  Op1miza1on   Intelligent  Prefetch,  Intelligent  Caching  of  Data  In-­‐Memory   In-­‐Memory  Op1on:  Lock  all  data  and  processes  to  run  in-­‐memory  
  • 18. Total  Customer  Value  -­‐  Time  to  Value   Oracle Report Building Model Load Build Test Tune Query 20 hours 2 hours 3 hours 6 hours 8 hours 2 hours Total = 41 hours ParAccel X Model Load X Build X Test X Tune Query 45 seconds 15 seconds Total = 1 minuteCopyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 18
  • 19. Total  Customer  Value  -­‐  Time  to  Value   Oracle Shrink Processing Model Load Build Test Tune Query 20 hours 2 hours 3 hours 6 hours 8 hours 46 hours Total = 85 hours ParAccel X Model Load X Build X Test X Tune Query 45 seconds 30 seconds Total = 1 minute, 15 secondsCopyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 19
  • 20. Deliver  Unconstrained  Analy/cs   Unconstrained Analytics Load and Go Run Ad Hoc Queries ParAccel Analytic Platform Query Any Time Query Any Data Query All Data Run Any Analytics Execute Sophisticated Analytics Return Results Quickly Iterate Quickly Through Discovery Share Workloads With Any Platform Support All Analysts Run Many Applications Create Analytic ServicesCopyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 20
  • 21. Envisioning  Unconstrained  Analy/cs   What  are  the  immediate,  pending,  and  “no  constraints”   opportuni1es  for  analy/cs?   Immediate Needs Pending Needs Weekly Market Basket Analysis No Constraints Daily Market Basket Analysis On Demand Market Basket Analysis Demand signalingCopyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 21
  • 22. Envisioning  Unconstrained  Analy/cs   What  are  the  immediate,  pending,  and  “no  constraints”   opportuni1es  for  data  expansion?   Immediate Needs Pending Needs Point of Sale + Loyalty + Credit + No Constraints Partner Data Pyschographic 6 Years Data Social Media Data 2 Years Data Archived, AccessibleCopyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 22
  • 23. Envisioning  Unconstrained  Analy/cs   What  are  the  immediate,  pending,  and  “no  constraints”   opportuni1es  for  analyst  communi/es?   Immediate Needs Pending Needs Business Analysts No Constraints Store Managers SuppliersCopyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 23
  • 24. Increasing  Analyst  Produc/vity  &  Innova/on   Before ParAccel With ParAccel ProductivityCopyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 24
  • 25. Ques1ons  and  Answers  Copyright 2013 ParAccel, Inc. Confidential. Do not Distribute. 25
  • 26. Perceptions & Questions Analyst: Robin BloorTwitter Tag: #briefr The Briefing Room
  • 27. The Bloor Group
  • 28. A Schism in BIBI IS FRAGMENTING BETWEEN TRADITIONAL BI AND ANALYTICSHindsight & Oversight Insight & Foresight Relatively easy to Modeling, accommodate interactive & technically conversational, highly variable The Bloor Group
  • 29. Big Data is New Data (Mostly) Machine generated data (logs) Web data Social media data Public data services Supply chain data Real-time data flows MOST OF THE VALUE IS IN The Bloor Group
  • 30. The Data Analytics Issue The Bloor Group
  • 31. Conversational Analytics The Bloor Group
  • 32. Boiling It Down The data analyst needs to be able to MARSHAL the data It is all about TIME TO INSIGHT – as long as that is followed by action The Bloor Group
  • 33. !   In my view we have reached a situation where there will be multiple “data engines.” Is that ParAccel’s view?!   Data analytics is usually 50% data prep (merging, cleansing, joining, transformation, etc.). How does ParAccel accommodate that?!   There are many analytics approaches and algorithms. What is the breadth of ParAccel’s capability?!   How does it accommodate algorithmic packages? The R Language? The Bloor Group
  • 34. !   In your view, is the “age of the data warehouse” over?!   What is ParAccel’s attitude to the cloud, or more specifically where would ParAccel recommend cloud deployment?!   Which sectors/businesses are currently in ParAccel’s “sweet spot”?!   Which companies/products do you regard as competitors/partners? The Bloor Group
  • 35. Twitter Tag: #briefr The Briefing Room
  • 36. Upcoming Topics This month: Analytics March: Operational Intelligence April: Intelligence May: Integration www.insideanalysis.comTwitter Tag: #briefr The Briefing Room
  • 37. Thank You for Your AttentionCertain images and/or photos in this presentation are the copyrighted property of 123RF Limited, their Contributors or Licensed Partners and are beingused with permission under license. These images and/or photos may not be copied or downloaded without permission from 123RF Limited.Certain images fall under a Creative Commons license: Some rights reserved by spike55151Twitter Tag: #briefr The Briefing Room