Your SlideShare is downloading. ×
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Big Data sessie Sebastiaan Raaphorst Locatienet
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Big Data sessie Sebastiaan Raaphorst Locatienet

820

Published on

Info.nl organized a knowledge session on Big Data on August 9. In this presentation Sebastiaan Raaphorst of Locatienet shows how (mobility) data can generate insights and can be basis for new …

Info.nl organized a knowledge session on Big Data on August 9. In this presentation Sebastiaan Raaphorst of Locatienet shows how (mobility) data can generate insights and can be basis for new services.

Published in: Business, Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
820
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
1
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. BIG DATALOCATIENETwww.locatienet.comwww.ptvbenelux.com Amsterdam, 9 augustus
  • 2. Actief op gebied van routeplanning en geografische diensten sinds 2001Sind 2004 onderdeel van de PTV GROUP´  Verkeersoptimalisatie´  Transportplanning´  Rit en routeplanningOp de consumentenmarkt vooral bekend van www.routenet.nl www.ptvbenelux.com 2 I pag. 2
  • 3. BIG DATA @LOCATIENETData gegenereerd door bezoekers Routenet - tijdstip - bestemming, vertrek lengte etc - waar gaan routes langVerkeersinformatie - files, aantal , lengte, oorzaak, trend - files op een route van gebruikerVerkeersmetingen - aantal voertuigen (loop detectors) - snelheid voertuigen (loop detector) - reistijd tussen A + B (camera)Smart phone tracking - meten van mobiliteitspatronen van gebruikers www.ptvbenelux.com I pag. 3
  • 4. LOOP DETECTOR www.ptvbenelux.com I pag. 4
  • 5. LOOP DETECTOR www.ptvbenelux.com I pag. 5
  • 6. NEDERLAND LIGT ER VOL MEE www.ptvbenelux.com I pag. 6
  • 7. AANTAL VOERTUIGEN PER MINUUT PER RIJSTROOK www.ptvbenelux.com I pag. 7
  • 8. GEMIDDELDE SNELHEID PER MINUUT PER RIJSTROOK www.ptvbenelux.com I pag. 8
  • 9. TRAJECTCONTROLE www.ptvbenelux.com I pag. 9
  • 10. VOOR TRAJECTCONTOLE A2 (BAAN 4) www.ptvbenelux.com I pag. 10
  • 11. NA INVOERING TRAJECTCONTOLE A2 (BAAN 4) www.ptvbenelux.com I pag. 11
  • 12. BIG DATAMomenteel ca 120.000 metingen per minuut´  rijstrook´  snelheid´  intensiteit´  reistijd´  voertuigklasse (auto, vrachtauto, grote vrachtauto)´  locatie´  kwaliteitsindicatieUitdaging om deze te:´  Valideren´  Aggregeren´  Visualiseren www.ptvbenelux.com I pag. 12
  • 13. TOEPASSINGEN LEVEL OF SERVICE www.ptvbenelux.com I pag. 13
  • 14. ZEKEROPTIJD.NL www.ptvbenelux.com I pag. 14
  • 15. ZEKEROPTIJD.NL www.ptvbenelux.com I pag. 15
  • 16. ZEKEROPTIJD.NL www.ptvbenelux.com I pag. 16
  • 17. Sunset project • EUs Seventh Framework Programme (FP7) • Stimulering van innovatie • Consortium, universiteiten onderzoeksinstellingen SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 17 17
  • 18. Sustainable mobility SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 18 18
  • 19. Sustainable mobility • We aim for reduced congestion, reduced air pollution or improved safety by  stimulating people to change their travelling behaviour. • We investigate how positive incentives can stimulate smart and sustainable traveling in urban regions. • 1. Smart phone application senses behavior • 2. System issues incentives , e.g. travel by bicycle and get a free coffee • 3. Smart phone application monitors impact of incentives. • 3 Living labs Enschede, Gotenborg and Leeds SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 19 19
  • 20. How • Locatienet’s focus in the project is the collection analysis of measurement data. • Application measures and provides feedback • Application is ubiquitous, runs silently in the background no need to start / stop •  Measurements are analyzed on a server SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 20 20
  • 21. Sensing SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 21 21
  • 22. Sensing SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 22 22
  • 23. Measurement strategySmartphone hasmany sensors. Someof them use moreenergy than others.Use them smartly.GPS & Networkingconsume mostenergy.Radio, Accelerometerand compass aremore efficient SUNSET EU review, Brussels, March 27, 2012 Info.nl big data 9-8-2012 23 23
  • 24. Accuracy v.s. Batery usageUser leaves home100% chargeNormal line = staticDotted line = travel Back home 60 % Phone in charger SUNSET EU review, Brussels, March 27, 2012 Info.nl big data 9-8-2012 24 24
  • 25. Basic data = simple • Timestamp of measurement • Position (lat / lon) • Speed (GPS if available) • Heading (GPS / Compass) • Quality indicator (measurement error in meters) • Measurement type • Battery level • Data gets a meaning if combined with other data: −  Maps (road network) −  Point of interest −  Other users SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 25 25
  • 26. Trip reconstructionMapmatched lineMeasurement SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 26 26
  • 27. Measurement quality SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 27 27
  • 28. One way streets & Ferry SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 28 28
  • 29. Sports SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 29 29
  • 30. Modality Detection • Decision tree based on measurement characteristics −  speed, max speed, acceleration, number of turnss, distanceDetectedmodality SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 30 30
  • 31. Modality # trips SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 31 31
  • 32. Modality Time SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 32 32
  • 33. Modality Distance SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 33 33
  • 34. PlacesCircles indicateplaces where tripsstart or stop.Red = oftenBlue = less frequent SUNSET EU review, Brussels, March 27, 2012 Info.nl big data 9-8-2012 34 34
  • 35. Places Home Detection SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 35 35
  • 36. Places home time distribution SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 36 36
  • 37. Place ? distribution SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 37 37
  • 38. Place Work SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 38 38
  • 39. Trip purpose Knowledge about places gives information about the purpose of a trip: Work à Home = Going home Home à Supermarket = Shopping SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 39 39
  • 40. Route Alternatives Home Work SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 40 40
  • 41. Route alternatives work home SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 41 41
  • 42. Questions Contact details: • sebastiaan@locatienet.com • +31 6 51312562 SUNSET EU review, Brussels, March 27, 2012Info.nl big data 9-8-2012 42 42

×