Company visit materialise summer school 2011
Upcoming SlideShare
Loading in...5
×
 

Company visit materialise summer school 2011

on

  • 762 views

 

Statistics

Views

Total Views
762
Views on SlideShare
762
Embed Views
0

Actions

Likes
0
Downloads
17
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Company visit materialise summer school 2011 Company visit materialise summer school 2011 Presentation Transcript

    • State of the Art inRapid Prototyping Jeroen Moons Project Manager
    • Agenda• Materialise…?• Use of prototype models• Overview different techniques• Low Volume Manufactering• Cases
    • The Materialise Group Additive Software for Manufacturing Additive Solutions Manufacturing RapidFit+ .MGX SOFTWARE PRODUC- SERVICESi.Materialise TION Biomedical Engineering Cranio-Maxillo Orthopaedic Facial 3
    • The Materialise Group:Diversity means strength
    • Materialise, a Global Presence Sweden Ukraine Germany United Kingdom Japan ChinaUSA Czech Republic Belgium India Venezuela Austria France Malaysia Italy Portugal Spain Offices Agents Home Offices
    • Agenda• Materialise…?• Use of prototype models• Overview different techniques• Low Volume Manufactering• Cases
    • Use of prototype models: 1. Why?Different reasons for production of prototypes • Limitation of risks • Reduction of costs • Time to market reduction • Sales & Marketing support • Communication
    • 1.1 Limitation of risksDoes the model live up to the expectations? • Visual control • Features, ergonomics, ... • Does the concept “fit” • Acceptation customers • Assembly control • Joining of multiple components • Functional control • Mechanical, thermal, chemical, ... • Clickfingers, ... • Features, ... • Production control • Mould-ability, ...
    • 1.2 Reduction of costsPrototyping changes the design process • RP makes product- and process optimisation possible, with a view to cost savings • RP allows early detection and correction of errors • RP allows verification of usability of designs in an early stage • RP allows start-up of production lines when the series mould is not ready yet
    • 1.3 TtM reduction• Prototypes allow testing of ideas while still in the concept phase • Different concepts in parallel • Immediate feeling of feasibility • eg. NextDay prototypes • Faster final “freeze” of design• You can enter the market with a prototype, without the final product being ready • Marketing • Initial feedback
    • 1.4 Sales & Marketing• Prototypes can be used • To talk to customers about a new concept • eg. A real estate project, a new bumper concept • To allow customers a choice between several concepts • eg. P&G showing 10 new shampoo bottles to the general public • To start up marketing campagnes without the product being ready • eg. Visually perfect prototype can be used for photo shoots
    • 1.5 Communication• A fysical model allows • Talking to customers about the concept • “Show & Tell” • Talking to suppliers about the requirements • Talking to colleagues with less technical knowledge • Determining milestones in a project, in order to give the entire team a common goal
    • Use of prototype models: 2. Customers• The main industries using prototypes are: • Automotive • Consumer goods • Coffee machine, washing machine, … • Industrial goods • Instrumentation panels, printers, … • Design & Engineering bureaus • Designers of new products commissioned by other companies • Medical goods • Kidney dialyses, measuring equipment, … • Architectural Models• The individual customer • i.materialise
    • Use of prototype models: 3. Trends• Low Volume Manufacturing • Using prototyping techniques to make final series components • Advantages • Designs tailored to the customer • Free-form design without limitations of traditional production techniques like tooling • Smart design can lead to • Integrated functionality • Avoiding (expensive) assembly
    • 3. Trends• Examples freeform functionality
    • Agenda• Materialise…?• Use of prototype models• Overview different techniques• Low Volume Manufactering• Cases
    • 1.1 Stereolithography• Process
    • 1.1 Stereolithography• Support structure – principle• vs. • Made up out of epoxy resin too • Creates an extra expense, but can‟t be avoided
    • 1.1 Stereolithography• Importance of orientation during the build • Amount of support• vs. • Lead time • Time needed for finishing • Slight anisotrophy of material properties (mechanical, optical)
    • 1.1 Stereolithography• Finishing • After the last layer, the building platform rises • Parts are released from building platform, and support structure is removed • Excess resin is rinsed away (alcohol) • Parts undergo a “UV cure” step, which provides extra strength • Surface is sandpapered • Connection points of the support structure • Visible layer structure • Finishing depends on requirements of customer • Afterwards parts can be finished with different coatings(…)
    • 1.1 Stereolithography• Materialises Mammoth machines • Stereolithography machines based on curtain coating principle • Dimensions up to 2100x700x800 mm • Application • Very large parts in one piece • Several smaller parts in 1 build, which makes building capacity very large
    • 1.1 Stereolithography• Available materials • Photo-hardening epoxy materials • Current Materialise range • Poly 1500 • Rigi 2200 • TUSK 2700 (white / transparent) • Protogen • Next • Xtreme • Tusk Solid Grey • Differences in stiffness, hardness, temperature resistance, sensitivity to shocks
    • 1.1 Stereolithography• Advantages of Stereolithography • Parts can easily be sanded and finished • Ideal for visual parts, show & tell models • Thanks to curtain coating technique • Very large parts in 1 pice possible (2100x650x600 mm), which gives extra strength and accuracy • Very fast (NextDay) service possible for parts within 650x650x450 mm • Transparent parts are possible
    • 1.1 Stereolithography• Disadvantages • Relatively weak mechanical properties • Stiffness • Impact strength • Low temperature resistance (~ 50°C) • Finished parts will keep reacting to UV light (the sun), unless protected with transparent paint. • Exception: • Nanotool: High stiffness, high temperature resistance, low resistance to impact • Next/ Xtreme/Tusk Solid Grey: improved impact resistance.
    • 1.2 Laser sintering• Process
    • 1.2 Laser sintering• 3D nesting • The nylon powder can support the overhanging structures on its own, so there is no need for a additional support structure. • At the same time, it allows to build several parts above one another • Considering the large fixed cost (and time) for 1 build, it is worth the effort of building as many parts in one build volume as possible • This leads to the process of 3D nesting: parts are placed as close to each other as possible • The excess powder is recycled.
    • 1.2 Laser sintering• 3D nesting – principle schedule• vs.•
    • 1.2 Laser sintering• 3D nesting
    • 1.2 Laser sintering• Finishing • After the last layer, the machine cools down. This can easily take two days. • The parts are taken out of the machine • Excess powder is blown off • Laser Sintered parts can’t be sanded • Sintered structure is porous, and material melts rather than being sanded • A part can possibly be treated with a filler. Afterwards parts can be primed or lacquered (…) • The filling however, closes up fine details
    • 1.2 Laser sintering• Available materials • Pa (Nylon) • Pa-Gf (Glass filled PA 12 • Alumide ( Aluminium filled Pa12) • Differences in stiffness, temperature resistance, possible finishing • Specials • C-reinforced PA • Metallic powder can also be sintered
    • 1.2 Laser sintering• Advantages of Laser Sintering • 3D nesting allows optimal use of capacity – this can result in low part prices. • This is true especially for very small parts that are easily nestable • Large series but cost-effective • The PA parts have good mechanical properties • Functional, eg. living hinge • Laser Sintered parts are less fragile than stereolithography parts • Relatively large parts 700x380x580 mm • Food safe material • High temperature resistance (120°C)
    • 1.2 Laser sintering• Disadvantages of Laser Sintering • Machine operates at 180°C, cool down needs to be sufficiently slow in order to avoid thermal tensions and distortion. • Certain geometries are very sensitive to distortion as consequence of these tensions (large, plane) • Eg cutting bumper in pieces and building it in Selective Laser Sintering: low accuracy • No transparent parts possible • Without special treatment the surface feels relatively coarse • Not suitable for cosmetic finishing in case of many details
    • 1.3 Fused Deposition Modeling• Process
    • 1.3 Fused Deposition• Finishing • After the last layer, the building platform rises • Parts are released from building platform, and support structure is removed (in a water tank) • FDM parts can’t be sanded • A part can possibly be treated with a filler. Afterwards parts can be primed or laquered (…) • Filling however closes up all fine details
    • 1.3 Fused Deposition• Available materials • Engineering plastics ABS, PC, PC-ABS, ABS M30,Ultem, PPSU • Differences in stiffness, hardness, impact resistance, temperature resistance • High-performance materials • PPSU • Ultem (strong, lightweight and flame retardant)
    • 1.3 Fused Deposition• Advantages of FDM • Materials are engineering plastics • Properties comparable to tooling parts • Very functional parts • Reasonable resistance to temperature (90-180°C) • Waterresistant • ABS is available „coloured in mass‟ in a number of basic colours • New Fortus 900 MC machine: also big parts. • Stable in time • No UV aging • No thermal distortion
    • 1.3 Fused Deposition• Disadvantages of FDM • Relatively slow building process • Anisotropy in the z-direction (risk of delamination if not well positioned) • No transparent parts possible • Without special treatment the surface feels relatively coarse • Not suitable for cosmetic finishing is there are many details
    • 1.4 Polyjet• Process
    • 1.4 Polyjet• Advantages of Polyjet • Very thin layers (16 µm tot 32 µm) • Good surface quality when parts are lifted from the machine • Fast technique• Disadvantages • Limited material range • Limited dimensions 500x400x200 mm • Available materials are not functional
    • 2. Levels of finishing• Parts can be finished to the level of the final production part • Lacquering • Stereolithography, Objet: black layer of lacquer to see all defects, after that desired colourlayer • Selective Laser Sintering, FDM: primer on filler because filler is too porous. After that layer of lacquer on the primer. • Colour layer: RAL or Pantone definition • “Chromium-plating” • Metal Paint • Metal Plating
    • 2. Levels of finishing• Parts can be finished to the level of the final series part • Coating with fabrics • Leather • Textile • Texture • Depending on pressure and distance of paint gun • Coarser texture at lower pressure and larger distance • Texture printed into the part • Prints, labelling • Tampon printing, …
    • 3. Tolerances• Layerthickness and tolerances of primary techniques Layerthickness Accuracy NextDay Stereo 0,15 - 0,2 mm +/- 0,20 % (*) Standard Stereo 0,1 - 0,15 mm +/- 0,20 % (*) Mammoth Stereo 0,1- 0,12 mm +/- 0,20 % (*) LS 0,1- 0,15 mm +/- 0,25 % (*) FDM 0,13 - 0,25 mm +/- 0,10 % (**) Objet 16 - 32 µm +/- 0,20 % (**) (*) minimum 0,2 mm (**) minimum 0,1 mm
    • 4 Applications• Stereolithography • Show and tell, visual models • Large parts • Fast run-through times (NextDay) • Master for Vacuum Casting• LS • Functional parts • Additive Manufacturing • Cosmetic aspect less important
    • 4. Applications• FDM • Strong functional parts • Cosmetic aspect less important • Additive Manufacturing• Polyjet • Small, detailed parts • Rubber parts
    • Agenda• Materialise…?• Use of prototype models• Overview different techniques• Low Volume Manufactering• Cases
    • Low Volume Manufactering• The technologies: • Additive Manufactering: • Layer by layer • Moulding Technologies: • Using different kind of moulds
    • 1. Additive ManufacteringUsing the „layer by layer‟ technologies. •Intigrated functionallity •Production parts in a few days •Redesign possible in production stage •Freefrom design
    • 2. Moulding Technologies• Small investment• Choice of mould depends on the amount of parts wantedSilicone mould Ureol mould Aluminium mouldUpto 25 parts/tool Upto 500 parts/tool Upto 10.000 parts/tool
    • Low Volume Manufactering:Medical case Customer: Sonowand AS Bergen, Norway Project: Small series of housings for intra-operative brain scanner Series size: 50 sets per year
    • Low Volume Manufactering: Medical case1. Additive manufacturing Probe holders have Inserts in additive manufacturing (laser sintering)
    • Low Volume Manufactering: Medical case 2. Moulding technologiesFront cover from ureol mould Bumpers from aluminium mouldProbe holders from silicone mould Pedals from aluminium mould
    • Low Volume Manufactering: Nikon Metrology case• Eindproductie via additive en low volume manufacturing • K-scan mmdx (Nikon Metrology) • VC met soft-touch finishing • Complexe SLS handle
    • Low Volume Manufactering: Nikon Metrology case1. Additive manufacturing • Complexe handle via Laser sintering: current design is not possible to produce with a moulding technology
    • Low Volume Manufactering: Nikon Metrology case2. Moulding technologies • VC met soft-touch finishing
    • • A few examples – Low Volume Manufactering
    • • A few examples – .MGX Design Products
    • Agenda• Materialise…?• Use of prototype models• Overview different techniques• Low Volume Manufactering• Cases
    • Cases• Reviving Pier Luigi Nervi’s art forms with additive manufacturing technology • Making architactural scale models • Models who will travel the world. • A unique way of presenting Nervi‟s creations • A cutting-edges technologie for a cutting-edge architect • Solution • Using a white Stereolithographie material to obtian a optimal surface quality with minor finishing • Spliting up the files in a smart way to be able to paint the parts.
    • Cases• Reviving Pier Luigi Nervi’s art forms with additive manufacturing technology • Materialise Vs Nervi
    • Cases• Concept Cars: Pininfarina Sintesi
    • Cases• Hearing Aid PointDe-aeration channel Trim plane check Assembly cloud Shell generation Battery door
    • Consumer Goods Case Study Waste Compactor• First phase: Prototype of preliminary design • Customer needs: Single, representative and functional prototype • To present new concept of compressing trash • To convince jury during selection rounds of TV show • Materialise solution: Mix of in-house technologies • Stereolithography, laser sintering and fused deposition modelling • Resulting in visual and functional prototype
    • Consumer Goods Case Study Waste Compactor• Second phase: Prototype series • Customer needs: Small series of functional prototypes • To test concept on the market • To present product during TV show • Materialise solution: 60 fully functional prototypes • Combination of laser sintering and vacuum casting • Resulting in visual and functional prototype
    • Consumer Goods Case Study Waste Compactor• Third phase: Production series • Customer needs: Small production series • To launch product on the market • Materialise solution: Tooling and moulding • Assisting customer with tool design “From the beginning it was clear that a lot of prototyping would be involved: verifying the design, showing the product in a TV show and performing long term application tests. As we believe Materialise is always able to select the best prototyping solution for every application, it was obvious for us to turn to them.” Sveinung Åkra, Vik-Sandvik IDE
    • Architecture Case Study Designer Chair• Customer needs: to manufacture a line of related chair forms to exhibit and offer for sale that are: • Unique • High quality • Functional (end use product) • Have non-conventional geometries“Our experience in providing the perfecttailored solution was in full force for thisproject. We paired our unrivalled knowledgeof additive manufacturing with exclusivetechnologies and produced a fantastic resultfor KOL/MAC. They really made animpression with their design.”Joris Debo, Materialise
    • Architecture Case Study Designer Chair• Materialise solution: in-house software tools & patented large-scale stereolithography • Mammoth stereolithography • Designs hollowed and custom internal reinforcement structure added • Chairs filled with PU foam • High quality finishing and painting
    • Architecture Case StudyDesigner Chair
    • Architecture Case StudyDesigner Chair
    • 4. Examples• More cases... Have a look at:http://www.materialise.com/materialise/view/en/98176 Cases.html• Materialise Onsite:http://www.materialiseonsite.com• i.materialisei.materialise.com
    • Agenda• Materialise…?• Use of prototype models• Overview different techniques• Low Volume Manufactering• Cases