Radiactividad
Upcoming SlideShare
Loading in...5
×
 

Radiactividad

on

  • 3,604 views

 

Statistics

Views

Total Views
3,604
Views on SlideShare
3,604
Embed Views
0

Actions

Likes
0
Downloads
49
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Radiactividad Radiactividad Presentation Transcript

  • RadiactividadIntegrantes de equipo:Estrada Gonzales BrendaMaximiliano Hernández Ana kerenMojica Avendaño IlseQuilantan avalos María IsabelVite Pacheco Christian Michelle6°LINFORMATICA
  • La radiactividad o radioactividad1 es un fenómeno físico por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluo rescencia, atravesar cuerpos opacos a la luz ordinaria, entre otros.ocurre en los núcleos de ciertos elementos, inestables, que son capaces de transformarse, o decaer, espontáneamente, en núcleos atómicos de otros elementos más estables.
  • La radiactividad es una propiedad delos isótopos que son "inestables", es decir, que se mantienen en un estado excitado en sus capas electrónicas o nucleares, con lo que, para alcanzar su estado fundamental, deben perder energía.Lo hacen en emisiones electromagnéticas o en emisiones de partículas con una determinada energía cinética. Esto se produce variando la energía de sus electrones (emitiendo rayos X) o de sus nucleones (rayo gamma) o variando el isótopo (al emitir desde el núcleo electrones, positrones, neutrones, prot ones o partículas más pesadas), y en varios pasos sucesivos, con lo que un isótopo pesado puede terminar convirtiéndose en uno mucho más ligero, como el uranio que, con el transcurrir de los siglos, acaba convirtiéndose en plomo.
  • La radiactividad se aprovecha para la obtención de energía nuclear, se usa en medicina (radioterapia y radioterapia radiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades, entre otras).La radiactividad puede ser: radiodiagnóstico• Natural: manifestada por los isótopos que se encuentran en la naturaleza.• Artificial o inducida: manifestada por los radioisótopos producidos en transformaciones artificiales.
  • Fisión nuclear la fisión es una reacción nuclear, lo que significa que tiene lugar en el núcleo atómico. La fisión ocurre cuando un núcleo pesado se divide en dos o más núcleos pequeños, además de algunos subproductos como neutrones libres, fotones (generalmente rayos gamma) y otros fragmentos del núcleo como partículas alfa (núcleos de helio) y beta(electrones y positrones de alta energía). el fotón es la partícula elemental responsable de las manifestaciones cuánticas del fenómeno electromagnético. Es la partícula portadora de todas las formas de radiación electromagnética, incluyendo a los rayos gamma, los rayos X, la luz ultravioleta, la luz visible (espectro electromagnético), la luz infrarroja, las microondas, y las ondas de radio.
  • La mayor parte de las investigaciones sobre fisión nuclear se basan en la distribución de masa y energía cinética de los fragmentos de fisión. Sin embargo, esta distribución es perturbada por la emisión de neutrones por parte de los fragmentos antes de llegar a los detectores.Aunque con muy baja probabilidad, en los experimentos se han detectado eventos de fisión fría, es decir fragmentos con tan baja energía de excitación que no emiten neutrones. Sin embargo, aún en esos casos, se observa la rotura de pares de nucleones, la que se manifiesta como igual probabilidad de obtener fragmentos con número par o impar de nucleones. Los resultados de estos experimentos permiten comprender mejor la dinámica de la fisión nuclear hasta el punto de escisión, es decir, antes de que se desvanezca la fuerza nuclear entre los fragmentos.
  • Fusión nuclearfusión nuclear es el proceso por el cual varios núcleos atómicos de carga similar se unen y forman un núcleo más pesado. Simultáneamente se libera o absorbe una cantidad enorme de energía, que permite a la materia entrar en un estado plasmático.Al fusión de dos núcleos de menor masa que el hierro (en este elemento y en el níquel ocurre la mayor energía de enlace por nucleón) libera energía en general. Por el contrario, la fusión de núcleos más pesados que el hierro absorbe energía. En el proceso inverso, la fisión nuclear, estos fenómenos suceden en sentidos opuestos.
  • En la naturaleza ocurre fusión nuclear en las estrellas, incluido el sol. En su interior las temperaturas son cercanas a 15 millones de grados Celsius. Por ello a las reacciones de fusión se les denomina termonucleares. En varias empresas se ha logrado también la fusión (artificial), aunque todavía no ha sido totalmente controlada. Sobre la base de los experimentos de transmutación nuclear de Ernesto Rutherford, conducidos pocos años antes, Mark Oliphant, en 1932, observó por vez primera la fusión de núcleos ligeros (isótopos de hidrógeno).
  • La investigación acerca de la fusión para fines militares se inició en los años 40 del siglo XX como parte del Proyecto Manhattan, pero no tuvo buen éxito hasta 1952. La indagación relativa a fusión controlada con fines civiles se inició en el decenio siguiente, los 50, y continúa hasta la fecha. La única central que utiliza la energía nuclear de fusión se encuentra en Karthzreich en Suiza aunque se considera de dominio europeo para investigación.
  • Para que pueda ocurrir la fusión debe superarse una importante barrera de energía producida por la fuerza electrostática. A grandes distancias, dos núcleos se repelen debido a la fuerza de repulsión electrostática entre sus protones, cargados positivamente.Sin embargo, si se puede acercar dos núcleos lo suficiente, debido a la interacción nuclear fuerte, que en distancias cortas es mayor, se puede superar la repulsión electrostática.Cuando un nucleón (protón o neutrón) se añade a un núcleo, la fuerza nuclear atrae a otros nucleones, pero -debido al corto alcance de esta fuerza- principalmente a sus vecinos inmediatos. Los nucleones del interior de un núcleo tienen más vecinos nucleones que los existentes en la superficie.Ya que la relación entre área de superficie y volumen de los núcleosmenores es mayor, por lo general la energía de enlace por nucleón debido a la fuerza nuclear aumenta según el tamaño del núcleo, pero se aproxima a un valor límite correspondiente al de un núcleo cuyo diámetro equivalga al de casi cuatro nucleones.Por otra parte, la fuerza electrostática es inversa al cuadrado de la distancia. Así, a un protón añadido a un núcleo le afectará una repulsión electrostática de todos los otros protones.Por tanto, debido a la fuerza electrostática, cuando los núcleos se hacen más grandes, la energía electrostática por nucleón aumenta sin límite.
  • Conclusión La radiactividad o radioactividad es un fenómeno físico por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, entre otros. la fisión es una reacción nuclear, lo que significa que tiene lugar en el núcleo atómico. La fisión ocurre cuando un núcleo pesado se divide en dos o más núcleos pequeños fusión nuclear es el proceso por el cual varios núcleos atómicos de carga similar se unen y forman un núcleo más pesado. Simultáneamente se libera o absorbe una cantidad enorme de energía, que permite a la materia entrar en un estado plasmático.
  • Mapa conceptual La radiactividad o radioactividad es un fenómeno físico por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, la fisión es una reacción fusión nuclear es el nuclear, lo que significa que proceso por el cual varios tiene lugar en el núcleo atómico. núcleos atómicos de carga La fisión ocurre cuando un similar se unen y forman un núcleo pesado se divide en dos o núcleo más pesado. más núcleos pequeños, además de algunos subproductos como neutrones libres, fotones