Week 3 Day 1 Ratio, Variation and Proportion (Algebra and Trigonometry, Young 2nd Edition, page 304-313)
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Week 3 Day 1
Transcript
1.
RATIO, VARIATION AND PROPORTION MATH10 ALGEBRA Week 3 Day 1 Ratio, Variation and Proportion (Algebra and Trigonometry, Young 2nd Edition, page 304-313)
2.
Week 3 Day 1 TODAY’S OBJECTIVE At the end of the lesson the students are expected to: Use ratio and proportion in solving problems involving them, Identify the different types of variation, Understand the difference between direct variation and inverse variation, Understand the difference between combined variation and joint variation, and Develop mathematical models using direct variation, inverse variation, combined variation and joint variation.
3.
Week 3 Day 1 Definition RATIO A ratio is an indicated quotient of two quantities. Every ratio is a fraction and all ratios can be described by means of a fraction. The ratio of x and y is written as x : y, it can also be represented as Thus,
4.
Week 3 Day 1 EXAMPLE 1. Express the following ratios as simplified fractions: a) 5 : 20 b) 2. Write the following comparisons as ratios reduced to lowestterms. Use common units whenever possible. a) 4 students to 8 students b) 4 days to 3 weeks c) 5 feet to 2 yards d) About 10 out of 40 students took Math Plus
5.
Week 3 Day 1 Definition PROPORTION A proportion is a statement indicating the equality of two ratios. Thus, , , are proportions. In the proportion x : y = m : n, x and n are called the extremes, y and m are called the means.x and m are the called the antecedents, y and n are called the consequents. In the event that the means are equal, they are called the mean proportional.
6.
Week 3 Day 1 EXAMPLE 1. Find the mean proportional of 2. Determine the value of x in the following proportion: a) 2 : 5 = x : 20 b)
7.
Week 3 Day 1 Definition VARIATION A variation is the name given to the study of the effects of changes among related quantities. Variation describes the relationship between variables.
8.
Week 3 Day 1 Direct Variation When one quantity is a constant multiple of another quantity, we say that the quantities are directlyproportional to one another . Let x and y represent two quantities. The following are equivalent statements:
The constant k is called the constant of variation or the constant of proportionality. Definition page 304
11.
Week 3 Day 1 EXAMPLE Write an equation that describes each variation. d is directly proportional to t. d=r when t=1. V is directly proportional to both l and w.V=6h when w=3 qndh=4. 24. W is directly proportional to both R and the square of I. W=4 when R=100 and I=0.25. (Exercises page 309)
12.
Week 3 Day 1 EXAMPLE In the United States, the costs of electricity is directly proportional to the number of kilowatt hours (kWh) used. If a household in Tennessee on average used 3098 kWh per month and had an average monthly electric bill of $179.99, find a mathematical model that gives the cost of electricity in Tennessee in terms of the number of kWh used.(Example 1 page 304) 2. Hooke’s Law states that the force needed to keep a spring stretched x units beyond its natural length is directly proportional x. Here the constant of proportionality is called a spring constant. Write Hooke’s Law as an equation. If a spring has a natural length of 10 cm and a force of 40 N is required to maintain the spring stretched to a length of 15 cm, find the spring constant. What force is needed to keep the spring stretched to a length of 14cm? ( Exercise 23 page 191 from Algebra & Trig. by Stewart, Redlin & Watson, 2nd edition)
13.
Week 3 Day 1 Direct Variation with Powers Let x and y represent two quantities. The following are equivalent statements:
15.
y is directly proportional to the nth power of x.
Definition page 305
16.
Week 3 Day 1 EXAMPLE A brother and sister have weight (pounds) that varies as the cube of the cube of height (feet) and they share the same proportionality constant . The sister is 6 feet tall and weighs 170 pounds. Her brother is 6’4” tall. How much does he weigh? (Your Turn page 306)
17.
Week 3 Day 1 Inverse Variation Let x and y represent two quantities. The following are equivalent statements:
The constant k is called the constant of variation or the constant of proportionality. Definition page 306
20.
Week 3 Day 1 EXAMPLE The number of potential buyers of a house decreases as the price of the house increases (see the graph on the below). If the number of potential buyers of a house in a particular city is inversely proportional to the price of the house, find a mathematical equation that describes the demand for the houses as it relates to the price. How many potential buyers will there be for a $2 million house? (Example 3 page 306) (100,1000) 1000 800 Demand (number of potential buyers) 600 (200,500) 400 (400,250) 200 (600,167) 200 600 800 400 Price of the house (in thousands of dollars)
21.
Week 3 Day 1 Inverse Variation with Powers Definition page 307
22.
Week 3 Day 1 Joint Variation and Combined Variation
When one quantity is proportional to the product of two or more other quantities, the variation is called joint variation.
Example: Simple interest which is defined as
When direct variation and inverse variation occur at the same time, the variation is called combined variation.
Example: Combined gas law in chemistry, Definition page 307
23.
Week 3 Day 1 EXAMPLE The gas in the headspace of a soda bottle has a volume of 9.0 ml, pressure of 2 atm (atmospheres), and a temperature of 298K (standard room temperature of 77⁰F). If the soda bottle is stored in a refrigerator, the temperature drops to approximately 279K (42⁰F). What is the pressure of the gas in the headspace once the bottle is chilled? (Example 4 page 308)
24.
Week 3 Day 1 SUMMARY Direct, inverse, joint and combined variation can be used to model the relationship between two quantities. For two quantities x and y we say that: Joint variation occurs when one quantity is directly proportional to two or more quantities. Combined variation occurs when one quantity is directly proportional to one or more quantities and inversely proportional to one or more other quantities.
Be the first to comment