Scaling Self-Experimentation

1,855
-1

Published on

Presented at Medicine X, September 2012

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,855
On Slideshare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
9
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Scaling Self-Experimentation

  1. 1. Scaling Self-Experimentation IDA  SIM,  CO-­‐FOUNDER   September  28,  2012       A  project  of  the  Tides  Center     and  Professor  of  Medicine,   University  of  California  San  Francisco  
  2. 2. n  =  1  
  3. 3. (n  =  1).n  
  4. 4. n  Σ (n  =  1).
  5. 5. data  driven  feedback  loops  
  6. 6. 2  
  7. 7. without  better  sensemaking  to  drive  these  feedback  loops…  
  8. 8. Plateau  of  Diminished  Promise  
  9. 9. open  architecture  for  mobile  health   activity classification graphing mobility data over time a  small  set  of  common  principles/practices  by  which     these  modules  are  described  and  interface  to  one  another  
  10. 10. enabling  reuse,  integration,  and  innovation     getting  further  together  faster…  
  11. 11. n  Σ (n  =  1).
  12. 12. does  caffeine  affect  my  sleep?   N-­‐of-­‐1  study  design   caffeine   no  caffeine   caffeine   sleep   sleep   no  caffeine   caffeine   no  caffeine  
  13. 13. scaling  (n  =  1)  n  Outcome  Variables  •  a  caffeine  definition  module    •  a  sleep  definition  module,  with  APIs  for  getting  sleep  data  from   various  monitors  •  new  variables  that  take  advantage  of  mobile  (e.g.,  reality  mining)  Scripting  study  protocols  •  e.g.,  modules  for  setting  up  an  n-­‐of-­‐1  study    
  14. 14. n   Σ scaling            (n=1)  Make  the  findings  comparable  for  aggregation  •  libraries  of  standard  measures  (e.g.,  PHQ-­‐9,  PROMIS)  •  indexing  of  variables  and  results  and  to  standard  vocabularies              
  15. 15. n   Σ scaling            (n=1)  Need  to  describe  context  to  combine  apples  with  apples    •  who  is  “n”:  demographics,  important  clinical  features  •  study  approach:  ad  hoc,  n-­‐of-­‐1,  etc.    •  activity  context:  walking?  running?  •  social  context:  …  •  technical  context:  device,  operating  system,  app,  version,  sampling   rate…  •  etc.      
  16. 16. 2  
  17. 17. connect  with  us  •  Web:  www.openmhealth.org    •  Twitter:  @open_mhealth  •   email@openmhealth.org    
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×