0
David Giard
Microsoft Technical Evangelist
blog: DavidGiard.com
tv: TechnologyAndFriends.com
twitter: @DavidGiard
Data Vis...
@DavidGiard
This presentation
is dedicated to
Dave Bost
@DavidGiard
I II III IV
x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7....
@DavidGiard
0
5
10
0 10 20
I
0
5
10
0 10 20
II
0
5
10
0 10 20
III
0
5
10
0 10 20
IV
@DavidGiard
Dr. Edward Tufte
@DavidGiard
Graphical Excellence
@DavidGiard
@DavidGiard
@DavidGiard
@DavidGiard
@DavidGiard
500,000
100,000
10,000
@DavidGiard
Graphical Integrity
@DavidGiard
Blatant Lies
Source: Fox News, Dec 2011
Reprinted by Washington Post
@DavidGiard
$(11,014)$0 $(11,014)
@DavidGiard
Lie
@DavidGiard
Lie Factor
𝑆𝑖𝑧𝑒 𝑂𝑓 𝐸𝑓𝑓𝑒𝑐𝑑 π‘†β„Žπ‘œπ‘€π‘› 𝐼𝑛 πΊπ‘Ÿπ‘Žπ‘β„Žπ‘–π‘
𝑆𝑖𝑧𝑒 𝑂𝑓 𝐸𝑓𝑓𝑒𝑐𝑑 𝐼𝑛 π·π‘Žπ‘‘π‘Ž
@DavidGiard
Lie
Data Increase = 53%
Graphical Increase = 783%
Lie Factor=14.8
@DavidGiard
Truth
0
5
10
15
20
25
30
1978 1979 1980 1981 1982 1983 1984 1985
Required Fuel Economy Standards:
New cars bui...
@DavidGiard
Data Change = 125%
Graphical Change = 406%
Lie Factor=3.8
@DavidGiard
Data Change = 554%
Graphical Change = 27,000%
Lie Factor=48.8
@DavidGiard
@DavidGiard
@DavidGiard
Context
@DavidGiard
275
300
325
1955 1956
Connecticut Traffic Deaths,
Before (1955) and After(1956)
Stricter Enforcement by the Po...
@DavidGiard
@DavidGiard
225
250
275
300
325
1951 1952 1953 1954 1955 1956 1957 1958 1959
Connecticut Traffic Deaths
1951-1959
@DavidGiard
6
8
10
12
14
16
1951 1952 1953 1954 1955 1956 1957 1958 1959
Traffic Deaths per 100,000
Persons in Connecticut...
@DavidGiard
Principles of Graphical Integrity
β€’ Data Representations proportional to Data
β€’ #Dimensions in graph = #Dimens...
@DavidGiard
Data-Ink
@DavidGiard
Data-Ink Ratio
=
π·π‘Žπ‘‘π‘Ž πΌπ‘›π‘˜
π‘‡π‘œπ‘‘π‘Žπ‘™ πΌπ‘›π‘˜
@DavidGiard
Redundant Data
@DavidGiard
35.9
@DavidGiard
35.9
@DavidGiard
Metadata
@DavidGiard
0
20
40
60
80
100
120
140
160
0 1 2 3 4 5 6
@DavidGiard
0
20
40
60
80
100
120
140
160
0 1 2 3 4 5 6
@DavidGiard
0
20
40
60
80
100
120
140
160
0 1 2 3 4 5 6
@DavidGiard
0
40
80
120
160
0 2 4 6
@DavidGiard
0
40
80
120
160
0 2 4 6
@DavidGiard
0
40
80
120
160
0 2 4 6
@DavidGiard
@DavidGiard
@DavidGiard
@DavidGiard
@DavidGiard
@DavidGiard
Principles
β€’ Above all else, show the data
β€’ Maximize the Data-Ink ratio, within reason
β€’ Erase non-data-ink
β€’...
@DavidGiard
Vibrations
@DavidGiard
Vibrations
@DavidGiard
@DavidGiard
@DavidGiard
0
5
10
15
20
25
30
35
40
45
50
55
60
PERCENTCRITICALARTICLES
ISSUE AREAS
INFLATION
UNEMPLOYMENT
SHORTAGES
RACE...
@DavidGiard
INFLATION
UNEMPLOYMENT
SHORTAGES
RACE
CRIME
GOVT.POWER
CONFIDENCE
WATERGATE
COMPETENCE
0
5
10
15
20
25
30
35
4...
@DavidGiard
Chart Junk and Ducks
@DavidGiard
@DavidGiard
@DavidGiard
@DavidGiard
Worst. Graph. Ever.
@DavidGiard
Year % Students < 25
1972 28.0
1973 29.2
1974 32.8
1975 33.6
1976 33.0
@DavidGiard
Multifunctioning
Graphical Elements
@DavidGiard
@DavidGiard
@DavidGiard
@DavidGiard
Data Density
@DavidGiard
Data Density
π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘’π‘›π‘‘π‘Ÿπ‘–π‘’π‘  𝑖𝑛 π‘‘π‘Žπ‘‘π‘Ž π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π·π‘Žπ‘‘π‘Ž πΊπ‘Ÿπ‘Žπ‘β„Žπ‘–π‘
@DavidGiard
Low Data Density
@DavidGiard
Low Data Density
Number of entries = 4
Graph Area = 26.5 square inches
Data Density =
4 π‘‘π‘Žπ‘‘π‘Ž π‘’π‘›π‘‘π‘Ÿπ‘–π‘’π‘ 
26.5 π‘ π‘ž. ...
@DavidGiard
High Data Density
181 Numbers per square inch
@DavidGiard
High Data Density
1,000 Numbers per square inch
@DavidGiard
Small Multiples
@DavidGiard
Small Multiples
@DavidGiard
Small Multiples
@DavidGiard
Tufte’s Graphs
β€’ Sparkline
β€’ Slope Graph
@DavidGiard
Sparklines
@DavidGiard
Sparklines
@DavidGiard
Slope Graph
@DavidGiard
Slope Graph
Source: The Atlantic, June 30, 2012
@DavidGiard
Takeaways
β€’ Maintain Graphical Integrity
β€’ Maximize Data-Ink Ratio, within reason
β€’ Avoid Chartjunk and Ducks
...
@DavidGiard
@DavidGiard
00 -5
-9
-21
-11
-20
-24
-30
-26
Temperature ( C )
10/10
10/18
10/24
11/9
11/14
11/20
11/28
12/1
12/6
12/7
100...
@DavidGiard
0
20,000
40,000
60,000
80,000
100,000
120,000
10/10
10/12
10/14
10/16
10/18
10/20
10/22
10/24
10/26
10/28
10/3...
@DavidGiard
0
20,000
40,000
60,000
80,000
100,000
120,000
10/10
10/12
10/14
10/16
10/18
10/20
10/22
10/24
10/26
10/28
10/3...
@DavidGiard
0
20,000
40,000
60,000
80,000
100,000
120,000
10/10
10/12
10/14
10/16
10/18
10/20
10/22
10/24
10/26
10/28
10/3...
@DavidGiard
0
20,000
40,000
60,000
80,000
100,000
120,000
10/10
10/12
10/14
10/16
10/18
10/20
10/22
10/24
10/26
10/28
10/3...
@DavidGiard
0
20,000
40,000
60,000
80,000
100,000
120,000
10/10 10/17 10/24 10/31 11/7 11/14 11/21 11/28 12/5
#Troops
Date
@DavidGiard
-35
-30
-25
-20
-15
-10
-5
0
0
20,000
40,000
60,000
80,000
100,000
120,000
10/10 10/17 10/24 10/31 11/7 11/14 ...
David Giard
Microsoft Technical Evangelist
blog: DavidGiard.com
tv: TechnologyAndFriends.com
twitter: @DavidGiard
@DavidGiard
@DavidGiard
Upcoming SlideShare
Loading in...5
×

Effective Data Visualization (David Giard)

326

Published on



We spend much of our time collecting and analyzing data. That data is only useful if it can be displayed in a meaningful, understandable way.

Yale professor Edward Tufte presented many ideas on how to effectively present data to an audience or end user.

In this session, I will explain some of Tufte's most important guidelines about data visualization and how you can apply those guidelines to your own data. You will learn what to include, what to remove, and what to avoid in your charts, graphs, maps and other images that represent data." "We spend much of our time collecting and analyzing data. That data is only useful if it can be displayed in a meaningful, understandable way.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
326
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Effective Data Visualization (David Giard)"

  1. 1. David Giard Microsoft Technical Evangelist blog: DavidGiard.com tv: TechnologyAndFriends.com twitter: @DavidGiard Data Visualization The Ideas of Edward Tufte
  2. 2. @DavidGiard This presentation is dedicated to Dave Bost
  3. 3. @DavidGiard I II III IV x y x y x y x y 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.59 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.72 8.0 6.89
  4. 4. @DavidGiard 0 5 10 0 10 20 I 0 5 10 0 10 20 II 0 5 10 0 10 20 III 0 5 10 0 10 20 IV
  5. 5. @DavidGiard Dr. Edward Tufte
  6. 6. @DavidGiard Graphical Excellence
  7. 7. @DavidGiard
  8. 8. @DavidGiard
  9. 9. @DavidGiard
  10. 10. @DavidGiard
  11. 11. @DavidGiard 500,000 100,000 10,000
  12. 12. @DavidGiard Graphical Integrity
  13. 13. @DavidGiard Blatant Lies Source: Fox News, Dec 2011 Reprinted by Washington Post
  14. 14. @DavidGiard $(11,014)$0 $(11,014)
  15. 15. @DavidGiard Lie
  16. 16. @DavidGiard Lie Factor 𝑆𝑖𝑧𝑒 𝑂𝑓 𝐸𝑓𝑓𝑒𝑐𝑑 π‘†β„Žπ‘œπ‘€π‘› 𝐼𝑛 πΊπ‘Ÿπ‘Žπ‘β„Žπ‘–π‘ 𝑆𝑖𝑧𝑒 𝑂𝑓 𝐸𝑓𝑓𝑒𝑐𝑑 𝐼𝑛 π·π‘Žπ‘‘π‘Ž
  17. 17. @DavidGiard Lie Data Increase = 53% Graphical Increase = 783% Lie Factor=14.8
  18. 18. @DavidGiard Truth 0 5 10 15 20 25 30 1978 1979 1980 1981 1982 1983 1984 1985 Required Fuel Economy Standards: New cars built from 1978 to 1985
  19. 19. @DavidGiard Data Change = 125% Graphical Change = 406% Lie Factor=3.8
  20. 20. @DavidGiard Data Change = 554% Graphical Change = 27,000% Lie Factor=48.8
  21. 21. @DavidGiard
  22. 22. @DavidGiard
  23. 23. @DavidGiard Context
  24. 24. @DavidGiard 275 300 325 1955 1956 Connecticut Traffic Deaths, Before (1955) and After(1956) Stricter Enforcement by the Police Against Cars Exceeding Speed Limit Before stricter enforcement After stricter enforcement
  25. 25. @DavidGiard
  26. 26. @DavidGiard 225 250 275 300 325 1951 1952 1953 1954 1955 1956 1957 1958 1959 Connecticut Traffic Deaths 1951-1959
  27. 27. @DavidGiard 6 8 10 12 14 16 1951 1952 1953 1954 1955 1956 1957 1958 1959 Traffic Deaths per 100,000 Persons in Connecticut, Massachusetts, Rhode Island, and New York 1951-1959 NY MA CT RI
  28. 28. @DavidGiard Principles of Graphical Integrity β€’ Data Representations proportional to Data β€’ #Dimensions in graph = #Dimensions in data β€’ Real dollars, instead of deflated dollars β€’ Provide context
  29. 29. @DavidGiard Data-Ink
  30. 30. @DavidGiard Data-Ink Ratio = π·π‘Žπ‘‘π‘Ž πΌπ‘›π‘˜ π‘‡π‘œπ‘‘π‘Žπ‘™ πΌπ‘›π‘˜
  31. 31. @DavidGiard Redundant Data
  32. 32. @DavidGiard 35.9
  33. 33. @DavidGiard 35.9
  34. 34. @DavidGiard Metadata
  35. 35. @DavidGiard 0 20 40 60 80 100 120 140 160 0 1 2 3 4 5 6
  36. 36. @DavidGiard 0 20 40 60 80 100 120 140 160 0 1 2 3 4 5 6
  37. 37. @DavidGiard 0 20 40 60 80 100 120 140 160 0 1 2 3 4 5 6
  38. 38. @DavidGiard 0 40 80 120 160 0 2 4 6
  39. 39. @DavidGiard 0 40 80 120 160 0 2 4 6
  40. 40. @DavidGiard 0 40 80 120 160 0 2 4 6
  41. 41. @DavidGiard
  42. 42. @DavidGiard
  43. 43. @DavidGiard
  44. 44. @DavidGiard
  45. 45. @DavidGiard
  46. 46. @DavidGiard Principles β€’ Above all else, show the data β€’ Maximize the Data-Ink ratio, within reason β€’ Erase non-data-ink β€’ Erase redundant data-ink β€’ Revise and edit
  47. 47. @DavidGiard Vibrations
  48. 48. @DavidGiard Vibrations
  49. 49. @DavidGiard
  50. 50. @DavidGiard
  51. 51. @DavidGiard 0 5 10 15 20 25 30 35 40 45 50 55 60 PERCENTCRITICALARTICLES ISSUE AREAS INFLATION UNEMPLOYMENT SHORTAGES RACE CRIME GOVT. POWER CONFIDENCE WATERGATE COMPETENCE Linear (RACE)
  52. 52. @DavidGiard INFLATION UNEMPLOYMENT SHORTAGES RACE CRIME GOVT.POWER CONFIDENCE WATERGATE COMPETENCE 0 5 10 15 20 25 30 35 40 45 50 55 60 PERCENTCRITICALARTICLES ISSUE AREAS
  53. 53. @DavidGiard Chart Junk and Ducks
  54. 54. @DavidGiard
  55. 55. @DavidGiard
  56. 56. @DavidGiard
  57. 57. @DavidGiard Worst. Graph. Ever.
  58. 58. @DavidGiard Year % Students < 25 1972 28.0 1973 29.2 1974 32.8 1975 33.6 1976 33.0
  59. 59. @DavidGiard Multifunctioning Graphical Elements
  60. 60. @DavidGiard
  61. 61. @DavidGiard
  62. 62. @DavidGiard
  63. 63. @DavidGiard Data Density
  64. 64. @DavidGiard Data Density π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘’π‘›π‘‘π‘Ÿπ‘–π‘’π‘  𝑖𝑛 π‘‘π‘Žπ‘‘π‘Ž π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π·π‘Žπ‘‘π‘Ž πΊπ‘Ÿπ‘Žπ‘β„Žπ‘–π‘
  65. 65. @DavidGiard Low Data Density
  66. 66. @DavidGiard Low Data Density Number of entries = 4 Graph Area = 26.5 square inches Data Density = 4 π‘‘π‘Žπ‘‘π‘Ž π‘’π‘›π‘‘π‘Ÿπ‘–π‘’π‘  26.5 π‘ π‘ž. 𝑖𝑛. =.15 data entries per sq. in.
  67. 67. @DavidGiard High Data Density 181 Numbers per square inch
  68. 68. @DavidGiard High Data Density 1,000 Numbers per square inch
  69. 69. @DavidGiard Small Multiples
  70. 70. @DavidGiard Small Multiples
  71. 71. @DavidGiard Small Multiples
  72. 72. @DavidGiard Tufte’s Graphs β€’ Sparkline β€’ Slope Graph
  73. 73. @DavidGiard Sparklines
  74. 74. @DavidGiard Sparklines
  75. 75. @DavidGiard Slope Graph
  76. 76. @DavidGiard Slope Graph Source: The Atlantic, June 30, 2012
  77. 77. @DavidGiard Takeaways β€’ Maintain Graphical Integrity β€’ Maximize Data-Ink Ratio, within reason β€’ Avoid Chartjunk and Ducks β€’ Use Multifunctioning Graphical Elements, if possible β€’ Keep Labels with data β€’ Maximize Data Density
  78. 78. @DavidGiard
  79. 79. @DavidGiard 00 -5 -9 -21 -11 -20 -24 -30 -26 Temperature ( C ) 10/10 10/18 10/24 11/9 11/14 11/20 11/28 12/1 12/6 12/7 100,000 96,000 55,000 37,000 24,000 50,000 25,000 20,00012,00010,000 # Troops 10/10 10/18 10/24 11/9 11/14 11/20 11/28 12/1 12/6 12/7 040 90 145 180 250 275300 320 365 Distance Traveled (km) 10/10 10/18 10/24 11/9 11/14 11/20 11/28 12/1 12/6 12/7
  80. 80. @DavidGiard 0 20,000 40,000 60,000 80,000 100,000 120,000 10/10 10/12 10/14 10/16 10/18 10/20 10/22 10/24 10/26 10/28 10/30 11/1 11/3 11/5 11/7 11/9 11/11 11/13 11/15 11/17 11/19 11/21 11/23 11/25 11/27 11/29 12/1 12/3 12/5 12/7 #Troops Date Troops Troops
  81. 81. @DavidGiard 0 20,000 40,000 60,000 80,000 100,000 120,000 10/10 10/12 10/14 10/16 10/18 10/20 10/22 10/24 10/26 10/28 10/30 11/1 11/3 11/5 11/7 11/9 11/11 11/13 11/15 11/17 11/19 11/21 11/23 11/25 11/27 11/29 12/1 12/3 12/5 12/7 #Troops Date Troops Troops
  82. 82. @DavidGiard 0 20,000 40,000 60,000 80,000 100,000 120,000 10/10 10/12 10/14 10/16 10/18 10/20 10/22 10/24 10/26 10/28 10/30 11/1 11/3 11/5 11/7 11/9 11/11 11/13 11/15 11/17 11/19 11/21 11/23 11/25 11/27 11/29 12/1 12/3 12/5 12/7 #Troops Date Troops
  83. 83. @DavidGiard 0 20,000 40,000 60,000 80,000 100,000 120,000 10/10 10/12 10/14 10/16 10/18 10/20 10/22 10/24 10/26 10/28 10/30 11/1 11/3 11/5 11/7 11/9 11/11 11/13 11/15 11/17 11/19 11/21 11/23 11/25 11/27 11/29 12/1 12/3 12/5 12/7 #Troops Date
  84. 84. @DavidGiard 0 20,000 40,000 60,000 80,000 100,000 120,000 10/10 10/17 10/24 10/31 11/7 11/14 11/21 11/28 12/5 #Troops Date
  85. 85. @DavidGiard -35 -30 -25 -20 -15 -10 -5 0 0 20,000 40,000 60,000 80,000 100,000 120,000 10/10 10/17 10/24 10/31 11/7 11/14 11/21 11/28 12/5 Temperature(Celsius) #Troops Date Troops Temperature
  86. 86. David Giard Microsoft Technical Evangelist blog: DavidGiard.com tv: TechnologyAndFriends.com twitter: @DavidGiard
  87. 87. @DavidGiard
  88. 88. @DavidGiard
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

Γ—