Your SlideShare is downloading. ×
 
Introduction <ul><li>The application of training and conditioning </li></ul><ul><li>Tests & validity </li></ul><ul><li>Bio...
A little about me…. <ul><li>Founder and president of The Institute of Sport Science & Athletic Conditioning (ISSAC) </li><...
 
Sports & Specificity <ul><li>So many different types of sports </li></ul><ul><li>So many different ways of training them <...
Training & Conditioning <ul><li>What is the “Right Way?” </li></ul><ul><li>Speed, Power, Strength, etc…. </li></ul><ul><li...
Traditional Testing
Why Do We Do It? <ul><li>Assess athletic ability </li></ul><ul><li>Identify strengths </li></ul><ul><li>Identify weaknesse...
Steps to Success! <ul><li>Where are we? </li></ul><ul><li>Where do we want to go? </li></ul><ul><li>How do we get there? <...
Program Design Implement &  Assess Analysis & Testing
Validity <ul><li>Test must emulate energy requirements </li></ul><ul><li>Must duplicate the important movements of the spo...
Traditional Testing <ul><li>We know the typical </li></ul><ul><ul><li>Vertical </li></ul></ul><ul><ul><li>40 </li></ul></u...
Exercise Physiology Tests <ul><li>Most familiar to coaches </li></ul><ul><li>VO 2  Max </li></ul><ul><li>Lactate Threshold...
Biomechanics <ul><li>The discipline of biomechanics integrates the laws of physics and the working concepts of engineering...
What do we need to do? <ul><li>Stick with The Foundations </li></ul><ul><li>Newtonian Physics applies across the board </l...
<ul><li>Power Production </li></ul><ul><li>Force Development </li></ul><ul><li>Work Load Capacity </li></ul><ul><li>Accele...
Common Biomechanical Studies <ul><li>Angular velocity of throwing/swinging arm </li></ul><ul><li>Arm swing/leg swing for s...
Application of Tests
How do tests improve actual performance? <ul><li>The science is constant </li></ul><ul><li>The basics are still observable...
Why Are These Tests Valid? <ul><li>Use “real life” motion </li></ul><ul><li>The important movements of sports are measurab...
<ul><li>Power = Force x distance/time </li></ul><ul><li>Force = mass x acceleration </li></ul><ul><li>Acceleration = veloc...
<ul><li>TIME! </li></ul>The Common Factor?
Time is the common denominator variable in… <ul><li>Increasing Power </li></ul><ul><li>Increasing Force </li></ul><ul><li>...
Speed vs. Fiber Activation <ul><li>P = Fd/t = m a d / t </li></ul><ul><li>Lighter weight will decrease time </li></ul><ul>...
Speed vs. Fiber Activation <ul><li>Speed isn’t everything </li></ul><ul><li>Time may small, but is Force (mass) exerted su...
There are many variables that can lead to Muscular Fatigue: <ul><li>Depletion of intramuscular ATP/CP </li></ul><ul><li>A ...
Muscle Fatigue =  Force Production <ul><li>Decreases in maximum force (F Max ) and force production (F Prod ) are evident ...
Anaerobic/complex movements <ul><li>High intensity anaerobic sports demand explosive power/energy </li></ul><ul><li>Muscle...
The Deadlift <ul><li>Anaerobic </li></ul><ul><li>Rapid muscular fatigue </li></ul><ul><li>Rapid technique breakdown </li><...
Fatigue quantifiable by: <ul><li>Reduction in lifting force </li></ul><ul><li>Reduction in power </li></ul><ul><li>Decreas...
Does It Matter? <ul><li>The ends are the same (fatigue) </li></ul><ul><li>Doesn’t quite matter how you get there </li></ul...
So, now what? <ul><li>We know what to look for </li></ul><ul><li>But how are we going to look for it? </li></ul>
Optimal Equipment <ul><li>Force plate </li></ul><ul><li>Tendo weightlifting analyzer </li></ul><ul><li>Accelerometer </li>...
A  TON  of variables! <ul><li>Marker selection </li></ul><ul><li>Signal “noise,” Data smoothing </li></ul><ul><li>Disconti...
A  TON  of variables! <ul><li>Ridiculous amounts of anthropometric measurements </li></ul><ul><li>Throw in some Calculus <...
Do we  REALLY  want to deal with all this??
Not practical… <ul><li>Equipment expensive </li></ul><ul><li>Location restrictions </li></ul><ul><li>Time restraints </li>...
Realistic Equipment <ul><li>Simple Video Camera </li></ul><ul><li>Olympic Bar & Plates </li></ul><ul><li>A pair or two of ...
 
 
 
Still Observable <ul><li>Decreased bar speed </li></ul><ul><li>Decreased joint velocity </li></ul><ul><li>Decreased hip an...
Examples of other movements…
 
 
 
Bottom Line… <ul><li>Unless you are in a lab conducting research </li></ul><ul><li>This will get the job done with what yo...
Other Applications
Quad to Hamstring Strength Ratio <ul><li>Strength imbalance may equate to injury </li></ul><ul><li>Weak antagonist hamstri...
Ground Contact Time <ul><li>Minimum time on the ground </li></ul><ul><li>Eccentric vs. Concentric Loading </li></ul><ul><l...
Bilateral vs. unilateral strength production  <ul><li>Hip Extensor, etc. </li></ul><ul><li>Instability in movement in spor...
Increasing leg turn over vs. stride length  <ul><li>More ground contact time ratio </li></ul><ul><li>Car in the air </li><...
Upper body vs. lower body power/force production  <ul><li>Almost all sport movements begin with the feet in contact with t...
So, what to do… <ul><li>Learn a little bit of the basics </li></ul><ul><li>Don’t ignore the obvious </li></ul><ul><li>Don’...
How to put it all together <ul><li>Observe and Assess </li></ul><ul><li>Recognize and Translate </li></ul><ul><li>Design a...
Questions?
<ul><li>Michael S. Palmieri,  CSCS, USAW </li></ul><ul><li>[email_address] </li></ul>
Upcoming SlideShare
Loading in...5
×

Application of Biomechanical Analysis to Performance Testing & Program Design

1,162

Published on

Published in: Sports, Technology, Education
1 Comment
4 Likes
Statistics
Notes
No Downloads
Views
Total Views
1,162
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
1
Likes
4
Embeds 0
No embeds

No notes for slide

Transcript of "Application of Biomechanical Analysis to Performance Testing & Program Design"

  1. 2. Introduction <ul><li>The application of training and conditioning </li></ul><ul><li>Tests & validity </li></ul><ul><li>Biomechanics defined </li></ul><ul><li>How and why does it work </li></ul><ul><li>How can it improve actual performance </li></ul><ul><li>What you can do with your clients </li></ul>
  2. 3. A little about me…. <ul><li>Founder and president of The Institute of Sport Science & Athletic Conditioning (ISSAC) </li></ul><ul><li>Current graduate student in Biomechanics at the University of Nevada, Las Vegas (UNLV) </li></ul><ul><li>In the industry for over twenty years </li></ul><ul><li>Former powerlifter (ADFPA) </li></ul><ul><li>And just to get it out of the way…. </li></ul>
  3. 5. Sports & Specificity <ul><li>So many different types of sports </li></ul><ul><li>So many different ways of training them </li></ul><ul><li>Sport Specific? How about Athlete Specific? </li></ul><ul><li>But the underlying science is constant! </li></ul>
  4. 6. Training & Conditioning <ul><li>What is the “Right Way?” </li></ul><ul><li>Speed, Power, Strength, etc…. </li></ul><ul><li>Outcome dependent </li></ul><ul><li>SAID Principle : S pecific Adaptations to Imposed Demands </li></ul>
  5. 7. Traditional Testing
  6. 8. Why Do We Do It? <ul><li>Assess athletic ability </li></ul><ul><li>Identify strengths </li></ul><ul><li>Identify weaknesses </li></ul><ul><li>Goal setting </li></ul><ul><li>Develop and adjust program </li></ul><ul><li>“Starting Point, End Point” </li></ul>
  7. 9. Steps to Success! <ul><li>Where are we? </li></ul><ul><li>Where do we want to go? </li></ul><ul><li>How do we get there? </li></ul><ul><li>Alternate paths? </li></ul><ul><li>Are we identifying the right variables? </li></ul>
  8. 10. Program Design Implement & Assess Analysis & Testing
  9. 11. Validity <ul><li>Test must emulate energy requirements </li></ul><ul><li>Must duplicate the important movements of the sport for which it is being tested </li></ul>
  10. 12. Traditional Testing <ul><li>We know the typical </li></ul><ul><ul><li>Vertical </li></ul></ul><ul><ul><li>40 </li></ul></ul><ul><ul><li>T-test </li></ul></ul><ul><ul><li>Etc…… </li></ul></ul><ul><li>What are we really measuring? </li></ul><ul><li>But what about something more? </li></ul>
  11. 13. Exercise Physiology Tests <ul><li>Most familiar to coaches </li></ul><ul><li>VO 2 Max </li></ul><ul><li>Lactate Threshold </li></ul><ul><li>Body Composition </li></ul><ul><li>Still, is there something more? </li></ul>
  12. 14. Biomechanics <ul><li>The discipline of biomechanics integrates the laws of physics and the working concepts of engineering to describe the motion of various body segments and the forces acting on these segments. </li></ul>
  13. 15. What do we need to do? <ul><li>Stick with The Foundations </li></ul><ul><li>Newtonian Physics applies across the board </li></ul><ul><li>Human or Machine, these are constant </li></ul><ul><li>This allows more precise and direct application </li></ul>
  14. 16. <ul><li>Power Production </li></ul><ul><li>Force Development </li></ul><ul><li>Work Load Capacity </li></ul><ul><li>Acceleration </li></ul><ul><li>Torque </li></ul><ul><li>Linear Velocity </li></ul><ul><li>Angular Momentum </li></ul>What are we looking for?
  15. 17. Common Biomechanical Studies <ul><li>Angular velocity of throwing/swinging arm </li></ul><ul><li>Arm swing/leg swing for sprinting </li></ul><ul><li>Vertical Jump </li></ul><ul><li>How about a little more detail? </li></ul><ul><li>Let’s get past the surface and down to the specifics! </li></ul>
  16. 18. Application of Tests
  17. 19. How do tests improve actual performance? <ul><li>The science is constant </li></ul><ul><li>The basics are still observable </li></ul><ul><li>Therefore, methods are still applicable </li></ul>
  18. 20. Why Are These Tests Valid? <ul><li>Use “real life” motion </li></ul><ul><li>The important movements of sports are measurable </li></ul>
  19. 21. <ul><li>Power = Force x distance/time </li></ul><ul><li>Force = mass x acceleration </li></ul><ul><li>Acceleration = velocity/time </li></ul><ul><li>Velocity = displacement/time </li></ul>Let’s take a second look…
  20. 22. <ul><li>TIME! </li></ul>The Common Factor?
  21. 23. Time is the common denominator variable in… <ul><li>Increasing Power </li></ul><ul><li>Increasing Force </li></ul><ul><li>Increasing acceleration </li></ul><ul><li>Increasing velocity </li></ul><ul><li>Therefore, decrease your time, you increase your production. </li></ul>
  22. 24. Speed vs. Fiber Activation <ul><li>P = Fd/t = m a d / t </li></ul><ul><li>Lighter weight will decrease time </li></ul><ul><li>This will increase Power </li></ul><ul><li>At some point, mass becomes too small for Force to be maintained, and Power will decrease </li></ul>
  23. 25. Speed vs. Fiber Activation <ul><li>Speed isn’t everything </li></ul><ul><li>Time may small, but is Force (mass) exerted sufficient? </li></ul><ul><li>Recruit muscle fibers </li></ul><ul><li>Stimulate growth </li></ul><ul><li>But with substantial mass, fatigue sets in faster </li></ul>
  24. 26. There are many variables that can lead to Muscular Fatigue: <ul><li>Depletion of intramuscular ATP/CP </li></ul><ul><li>A drop in intramuscular pH, and rise in H + (Kent, Braunl et al 2004) </li></ul><ul><li>Altered Na + -K + -ATPase activity (Fowels, Green et al 2002) </li></ul><ul><li>Decreased release of Ca 2+ from the SR </li></ul><ul><li>Depletion of Glycogen </li></ul>
  25. 27. Muscle Fatigue = Force Production <ul><li>Decreases in maximum force (F Max ) and force production (F Prod ) are evident with muscle fatigue during high intensity anaerobic exercises (Viitasalo, Komi et al 1981) </li></ul>
  26. 28. Anaerobic/complex movements <ul><li>High intensity anaerobic sports demand explosive power/energy </li></ul><ul><li>Muscles involved can achieve muscular fatigue quickly </li></ul><ul><li>Highly technical complex multi joint lifts are also subject to neuromuscular fatigue for similar reasons </li></ul><ul><li>This can result in a rapid deterioration of technique and form, increasing the risk of injury and decreasing the effectiveness of the exercise </li></ul><ul><li>Consequently, they are generally kept at lower repetition ranges </li></ul>
  27. 29. The Deadlift <ul><li>Anaerobic </li></ul><ul><li>Rapid muscular fatigue </li></ul><ul><li>Rapid technique breakdown </li></ul><ul><li>Low reps </li></ul><ul><li>Time vs. Force? </li></ul>
  28. 30. Fatigue quantifiable by: <ul><li>Reduction in lifting force </li></ul><ul><li>Reduction in power </li></ul><ul><li>Decreased bar speed </li></ul><ul><li>Hip torque generation </li></ul><ul><li>Decreased hip and knee motion </li></ul><ul><li>Increased lumbar flexion </li></ul><ul><li>Decreased postural stability </li></ul>
  29. 31. Does It Matter? <ul><li>The ends are the same (fatigue) </li></ul><ul><li>Doesn’t quite matter how you get there </li></ul><ul><li>Observable biomechanical deficiencies will still be present </li></ul>
  30. 32. So, now what? <ul><li>We know what to look for </li></ul><ul><li>But how are we going to look for it? </li></ul>
  31. 33. Optimal Equipment <ul><li>Force plate </li></ul><ul><li>Tendo weightlifting analyzer </li></ul><ul><li>Accelerometer </li></ul><ul><li>High speed camera </li></ul><ul><li>Computer with Dart Fish </li></ul>
  32. 34. A TON of variables! <ul><li>Marker selection </li></ul><ul><li>Signal “noise,” Data smoothing </li></ul><ul><li>Discontinuity of Measuring angles (0 to 360°, +180° to -180°) </li></ul><ul><li>Cartesian or Polar coordinates? </li></ul><ul><li>Parallax Error </li></ul>
  33. 35. A TON of variables! <ul><li>Ridiculous amounts of anthropometric measurements </li></ul><ul><li>Throw in some Calculus </li></ul><ul><li>How about some more formulas? </li></ul>
  34. 36. Do we REALLY want to deal with all this??
  35. 37. Not practical… <ul><li>Equipment expensive </li></ul><ul><li>Location restrictions </li></ul><ul><li>Time restraints </li></ul><ul><li>Got access to a full lab? </li></ul><ul><li>A day or two to kill? </li></ul>
  36. 38. Realistic Equipment <ul><li>Simple Video Camera </li></ul><ul><li>Olympic Bar & Plates </li></ul><ul><li>A pair or two of good eyeballs </li></ul><ul><li>Items to look for… </li></ul>
  37. 42. Still Observable <ul><li>Decreased bar speed </li></ul><ul><li>Decreased joint velocity </li></ul><ul><li>Decreased hip and knee motion </li></ul><ul><li>Decreased postural stability </li></ul><ul><li>Increased lumbar flexion </li></ul>
  38. 43. Examples of other movements…
  39. 47. Bottom Line… <ul><li>Unless you are in a lab conducting research </li></ul><ul><li>This will get the job done with what you want to accomplish! </li></ul>
  40. 48. Other Applications
  41. 49. Quad to Hamstring Strength Ratio <ul><li>Strength imbalance may equate to injury </li></ul><ul><li>Weak antagonist hamstring attempts to decelerate forward leg swing… SNAP! </li></ul>
  42. 50. Ground Contact Time <ul><li>Minimum time on the ground </li></ul><ul><li>Eccentric vs. Concentric Loading </li></ul><ul><li>Maximum Power/Force production. </li></ul>
  43. 51. Bilateral vs. unilateral strength production <ul><li>Hip Extensor, etc. </li></ul><ul><li>Instability in movement in sports </li></ul><ul><li>Monitor progress for athlete rehab </li></ul>
  44. 52. Increasing leg turn over vs. stride length <ul><li>More ground contact time ratio </li></ul><ul><li>Car in the air </li></ul><ul><li>More difficult to change person’s stride </li></ul>
  45. 53. Upper body vs. lower body power/force production <ul><li>Almost all sport movements begin with the feet in contact with the ground, with production beginning in the legs and, when needed, extending to the upper body. </li></ul>
  46. 54. So, what to do… <ul><li>Learn a little bit of the basics </li></ul><ul><li>Don’t ignore the obvious </li></ul><ul><li>Don’t wear the blinders </li></ul><ul><li>We’re not really that bad! </li></ul>
  47. 55. How to put it all together <ul><li>Observe and Assess </li></ul><ul><li>Recognize and Translate </li></ul><ul><li>Design and Apply </li></ul><ul><li>Implement and Improve </li></ul>
  48. 56. Questions?
  49. 57. <ul><li>Michael S. Palmieri, CSCS, USAW </li></ul><ul><li>[email_address] </li></ul>

×