OUR RELATIONS WITH COMPUTERS H.Jaap van den Herik Tilburg centre for Creative Computing (TiCC) Tilburg University School o...
Words of Thanks <ul><li>With much pleasure I would like to thank the </li></ul><ul><li>organisation ISCRAM for the invitat...
Words of Inspiration <ul><li>GO FOR A Ph.D. THESIS </li></ul>
The Main Topic <ul><li>The Acceptance of Scientific Findings </li></ul><ul><li>by our Society </li></ul>
Topics to be discussed <ul><li>Playing Chess </li></ul><ul><li>Judging Court Cases </li></ul><ul><li>Authentication of Pai...
The Research of the Future <ul><li>City Labs  </li></ul><ul><li>(Paul Burghardt) </li></ul><ul><li>Cloud Computing  </li><...
Technology and Future Mechanization 1950 Computerization 1970 Information handling 2000 Intelligent E-commerce E-commerce ...
 
Turing’s (1950) prediction <ul><li>“ The orginal question, “Can machines think?” I believe to be too meaningless to deserv...
 
Shannon’s (1950) prediction <ul><li>“ The thesis we will develop is that modern general purpose computers can be used to p...
<ul><ul><li>World Champion Programs </li></ul></ul><ul><ul><li>KAISSA 1974 Stockholm </li></ul></ul><ul><ul><li>CHESS 1977...
Fritz Reul <ul><li>Ph.D. thesis defense June 17, 2009 </li></ul><ul><li>New Architectures in Computer Chess </li></ul>
Classification <ul><li>Four examples: </li></ul><ul><li>Recidence predictions serial killer (RIGEL, PREDATOR) </li></ul><u...
Stijn Vanderlooy <ul><li>Ph.D. thesis defense July 1, 2009 </li></ul><ul><li>Ranking and Reliable Classification </li></ul>
A Painting Problem Cezanne Gauguin van Gogh ? ?
 
Training Data <ul><li>Van Gogh </li></ul><ul><li>(5000 textures) </li></ul>Schuffenecker (5000 textures)
Four Characteristics <ul><li>Colour </li></ul><ul><li>Repetition of patterns </li></ul><ul><li>Composition </li></ul><ul><...
Neural Networks Van Gogh Schuffenecker
Generalised  Results <ul><li>96% of the non-visible characteristics is classified correctly </li></ul>
Results <ul><li>Trained neural networks applied to the characteristics of the Yasuda Sunflowers </li></ul><ul><li>89%  of ...
Data set   6 impressionists,  10 paintings each
Eleven Approaches <ul><li>1. Hue 7. RGB </li></ul><ul><li>2. Orientation 8. Mean </li></ul><ul><li>3. Standard Dev. 9. Fas...
State of the art:  automatic recognition of impressionist painters
Laurens van der Maaten and Igor Berezhnyy <ul><li>Ph.D. defense June 23, 2009 </li></ul><ul><li>Feature Extraction from Vi...
Scientific Background for Intimate Relationships <ul><li>Artificial Intelligence </li></ul><ul><li>Computer Science </li><...
David Levy <ul><li>Ph.D. defense October 11, 2007 </li></ul><ul><li>Intimate Relationships with Artificial Partners </li><...
The investigation <ul><li>Past developments in our relationships with computers </li></ul><ul><li>Present developments in ...
The problem statement <ul><li>PS1: To what extent will the emotions that humans feel for other humans, for pet animals, fo...
Four research questions to PS1 <ul><li>RQ1: Is it possible to trace what (precisely) causes people to develop strong emoti...
Four research questions to PS2 <ul><li>RQ5: Why do people enjoy sex? </li></ul><ul><li>RQ6: Why do people pay for sex? </l...
Trend – The uses of robots  <ul><li>From the highly impersonal to highly personal </li></ul><ul><li>First used in industry...
Repliee Q1 – very humanlike
Trend – Human emotional attachments <ul><li>Originally only for other humans </li></ul><ul><li>Then for pet animals </li><...
Trend - Marriage <ul><li>Women’s property used to be owned by their husbands </li></ul><ul><li>Ownership sometimes extende...
Trend – Marriage (what next?) <ul><li>Social change is happening much faster nowadays than 200, 100 or even 50 years ago <...
Trend - Vibrators <ul><li>Early models steam and clockwork driven </li></ul><ul><li>First electric model invented in the 1...
Trend – Sex machines What do people want? <ul><li>Survey in 2003 on www.BetterHumans.com </li></ul><ul><li>1 st Humanoid l...
Conclusions to RQ1, RQ2, RQ3, RQ4 <ul><li>RQ1: Ten main factors are the most important for causing humans to fall in love ...
Conclusions to RQ5, RQ6, RQ7, RQ8 <ul><li>RQ5: People enjoy sex mainly for pure pleasure and to express emotional closenes...
Answering the problem statement <ul><li>Problem statement PS1 has been answered by the conclusions to research questions R...
Answering the problem statement <ul><li>Problem statement PS2 has been answered by the conclusions to research questions R...
The Longer Run (2200 - 2500) <ul><li>Hugo de Garis:  Superhuman Intelligence </li></ul><ul><li>Two opinions: Cosmist </li>...
<ul><li>Hugo de Garis (Utah, USA) </li></ul><ul><li>Ray Kurzweil (M.I.T., USA) </li></ul><ul><li>Hans Moravec (C.M.U., USA...
 
Upcoming SlideShare
Loading in …5
×

Jaap van de Herik dinnertalk at ISCRAM Summer School 25 Augustus

918
-1

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
918
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Jaap van de Herik dinnertalk at ISCRAM Summer School 25 Augustus

  1. 1. OUR RELATIONS WITH COMPUTERS H.Jaap van den Herik Tilburg centre for Creative Computing (TiCC) Tilburg University School of Humanities Diner Speech ISCRAM Tilburg, August 25, 2009 Summerschool 2009
  2. 2. Words of Thanks <ul><li>With much pleasure I would like to thank the </li></ul><ul><li>organisation ISCRAM for the invitation </li></ul><ul><li>In particular Dr. Bartel Van de Walle </li></ul><ul><li>Professor Piet Ribbers </li></ul><ul><li>Janneke Liebregts </li></ul>
  3. 3. Words of Inspiration <ul><li>GO FOR A Ph.D. THESIS </li></ul>
  4. 4. The Main Topic <ul><li>The Acceptance of Scientific Findings </li></ul><ul><li>by our Society </li></ul>
  5. 5. Topics to be discussed <ul><li>Playing Chess </li></ul><ul><li>Judging Court Cases </li></ul><ul><li>Authentication of Paintings </li></ul><ul><li>Acting as an Auditor (only mentioned) </li></ul><ul><li>Deciding on Euthanasia (only mentioned) </li></ul><ul><li>Intimate Relationships </li></ul>
  6. 6. The Research of the Future <ul><li>City Labs </li></ul><ul><li>(Paul Burghardt) </li></ul><ul><li>Cloud Computing </li></ul><ul><li>(Bart Bogaert, IBM Belgium) </li></ul>
  7. 7. Technology and Future Mechanization 1950 Computerization 1970 Information handling 2000 Intelligent E-commerce E-commerce 2005 Agent Technology 2012 Grid Technology 1990 Intelligent Programs Communication (ICT) 2015 Cloud Computing
  8. 9. Turing’s (1950) prediction <ul><li>“ The orginal question, “Can machines think?” I believe to be too meaningless to deserve discussion. Nevertheless I believe that at the end of the century the use of words and general educated opinion will have altered so much that one will be able to speak of machines thinking without expecting to be contradicted.” </li></ul>
  9. 11. Shannon’s (1950) prediction <ul><li>“ The thesis we will develop is that modern general purpose computers can be used to play a tolerably good game of chess by the use of a suitable computing routine or ‘program’.” </li></ul>Playing Chess
  10. 12. <ul><ul><li>World Champion Programs </li></ul></ul><ul><ul><li>KAISSA 1974 Stockholm </li></ul></ul><ul><ul><li>CHESS 1977 Toronto </li></ul></ul><ul><ul><li>BELLE 1980 Linz </li></ul></ul><ul><ul><li>CRAY BLITZ 1983 New York </li></ul></ul><ul><ul><li>CRAY BLITZ 1986 Keulen </li></ul></ul><ul><ul><li>DEEP THOUGHT 1989 Edmonton </li></ul></ul><ul><ul><li>REBEL 1992 Madrid </li></ul></ul><ul><ul><li>FRITZ 1995 Hong Kong </li></ul></ul><ul><ul><li>SHREDDER 1999 Paderborn </li></ul></ul><ul><ul><li>JUNIOR 2002 Maastricht </li></ul></ul><ul><ul><li>SHREDDER 2003 Graz </li></ul></ul><ul><ul><li>JUNIOR 2004 Ramat-Gan </li></ul></ul><ul><ul><li>ZAPPA 2005 Reykjavik </li></ul></ul><ul><ul><li>JUNIOR 2006 Turin </li></ul></ul><ul><ul><li>RYBKA 2007 Amsterdam </li></ul></ul><ul><ul><li>RYBKA 2008 Beijing </li></ul></ul><ul><ul><li>RYBKA 2009 Pamplona </li></ul></ul>
  11. 13. Fritz Reul <ul><li>Ph.D. thesis defense June 17, 2009 </li></ul><ul><li>New Architectures in Computer Chess </li></ul>
  12. 14. Classification <ul><li>Four examples: </li></ul><ul><li>Recidence predictions serial killer (RIGEL, PREDATOR) </li></ul><ul><li>Screening Airline Passengers </li></ul><ul><li>(CAPPS) </li></ul><ul><li>Fraud with Credit Cards (BARCLAY SYSTEM) </li></ul><ul><li>Risc on Recidivism </li></ul><ul><li>(Blokland and Nieuwbeerta, UL) </li></ul>Judging Court Cases
  13. 15. Stijn Vanderlooy <ul><li>Ph.D. thesis defense July 1, 2009 </li></ul><ul><li>Ranking and Reliable Classification </li></ul>
  14. 16. A Painting Problem Cezanne Gauguin van Gogh ? ?
  15. 18. Training Data <ul><li>Van Gogh </li></ul><ul><li>(5000 textures) </li></ul>Schuffenecker (5000 textures)
  16. 19. Four Characteristics <ul><li>Colour </li></ul><ul><li>Repetition of patterns </li></ul><ul><li>Composition </li></ul><ul><li>Brushstroke </li></ul>
  17. 20. Neural Networks Van Gogh Schuffenecker
  18. 21. Generalised Results <ul><li>96% of the non-visible characteristics is classified correctly </li></ul>
  19. 22. Results <ul><li>Trained neural networks applied to the characteristics of the Yasuda Sunflowers </li></ul><ul><li>89% of the characteristics are classified as owing to Van Gogh </li></ul><ul><li>But… identification of painter or painting method? (“Russian tank effect.”) </li></ul>
  20. 23. Data set 6 impressionists, 10 paintings each
  21. 24. Eleven Approaches <ul><li>1. Hue 7. RGB </li></ul><ul><li>2. Orientation 8. Mean </li></ul><ul><li>3. Standard Dev. 9. Fast Fourier Transform 240 </li></ul><ul><li>4. HSI 10. Fractal Dim </li></ul><ul><li>5. Kurtosis 11. Comb 8, 9, and 10 </li></ul><ul><li>6. Skewness </li></ul>
  22. 25. State of the art: automatic recognition of impressionist painters
  23. 26. Laurens van der Maaten and Igor Berezhnyy <ul><li>Ph.D. defense June 23, 2009 </li></ul><ul><li>Feature Extraction from Visual Data </li></ul><ul><li>Ph.D. defense December 7, 2009 </li></ul><ul><li>Digital Analysis of Paintings </li></ul>
  24. 27. Scientific Background for Intimate Relationships <ul><li>Artificial Intelligence </li></ul><ul><li>Computer Science </li></ul><ul><li>Gender Studies </li></ul><ul><li>Psychology </li></ul><ul><li>Robotics </li></ul><ul><li>Sexology </li></ul><ul><li>Sociology </li></ul>
  25. 28. David Levy <ul><li>Ph.D. defense October 11, 2007 </li></ul><ul><li>Intimate Relationships with Artificial Partners </li></ul>
  26. 29. The investigation <ul><li>Past developments in our relationships with computers </li></ul><ul><li>Present developments in our relationships with computers </li></ul><ul><li>How these relationships are continuing to progress </li></ul><ul><li>The culmination of this progress – robots becoming our artificial partners </li></ul>
  27. 30. The problem statement <ul><li>PS1: To what extent will the emotions that humans feel for other humans, for pet animals, for virtual pets, and even for less animal-like artefacts – namely computers – , be extended to embrace the robots of the future? </li></ul><ul><li>PS2: To what extent will the normal bounds of human sexuality be extended with respect to the robots of the future? </li></ul>
  28. 31. Four research questions to PS1 <ul><li>RQ1: Is it possible to trace what (precisely) causes people to develop strong emotional feelings of attraction (leading to attachment or love)? </li></ul><ul><li>RQ2: What characterizes the affective relationship between humans and pets? </li></ul><ul><li>RQ3: What is the attractive power of a virtual pet? </li></ul><ul><li>RQ4: What is the attraction of a humanoid robot for a human being? </li></ul>
  29. 32. Four research questions to PS2 <ul><li>RQ5: Why do people enjoy sex? </li></ul><ul><li>RQ6: Why do people pay for sex? </li></ul><ul><li>RQ7: What technologies are available to be used as sex technologies? </li></ul><ul><li>RQ8: What mental obstacles exist to prevent the final step towards the second objective? </li></ul>
  30. 33. Trend – The uses of robots <ul><li>From the highly impersonal to highly personal </li></ul><ul><li>First used in industry (e.g., car factories) </li></ul><ul><li>Next came service robots (e.g., cleaning, demolition, mail-carts, refuelling cars) </li></ul><ul><li>Then came personal robots for use in the home (robot pets, carer robots) </li></ul><ul><li>The trend is for increasing human-robot interaction </li></ul>
  31. 34. Repliee Q1 – very humanlike
  32. 35. Trend – Human emotional attachments <ul><li>Originally only for other humans </li></ul><ul><li>Then for pet animals </li></ul><ul><li>Then for virtual pets </li></ul><ul><li>In the future for robots </li></ul>
  33. 36. Trend - Marriage <ul><li>Women’s property used to be owned by their husbands </li></ul><ul><li>Ownership sometimes extended even to the women themselves </li></ul><ul><li>Interracial marriage used to be illegal, e.g., in the USA and South Africa </li></ul><ul><li>Same-sex marriage has recently become legal in some parts of the USA and in some other countries </li></ul><ul><li>Marriage used to be for life – now the divorce rate in many countries is around or approaching fifty percent </li></ul><ul><li>Marriage used to be regarded almost universally as being for procreation – now many couples opt not to have children </li></ul>
  34. 37. Trend – Marriage (what next?) <ul><li>Social change is happening much faster nowadays than 200, 100 or even 50 years ago </li></ul><ul><li>Changes in the meaning and purpose of marriage are also happening much faster than ever before </li></ul>
  35. 38. Trend - Vibrators <ul><li>Early models steam and clockwork driven </li></ul><ul><li>First electric model invented in the 1880s </li></ul><ul><li>Became popular at the start of the 20 th century </li></ul><ul><li>Popularity soared towards the end of the century </li></ul>
  36. 39. Trend – Sex machines What do people want? <ul><li>Survey in 2003 on www.BetterHumans.com </li></ul><ul><li>1 st Humanoid love slaves (41 per cent of votes) </li></ul><ul><li>2 nd Mind-to-mind interfaces (24 per cent) </li></ul><ul><li>3 rd Virtual reality sex (17 per cent) </li></ul>
  37. 40. Conclusions to RQ1, RQ2, RQ3, RQ4 <ul><li>RQ1: Ten main factors are the most important for causing humans to fall in love </li></ul><ul><li>RQ2:The emotional rewards of human-pet relationships, combined with anthropomorphism, create strong love for pets </li></ul><ul><li>RQ3: Humans attach emotional feelings (love) to virtual pets </li></ul><ul><li>RQ4: Almost all of the same ten factors (from RQ1) will play a part in human-robot companion relationships </li></ul>
  38. 41. Conclusions to RQ5, RQ6, RQ7, RQ8 <ul><li>RQ5: People enjoy sex mainly for pure pleasure and to express emotional closeness </li></ul><ul><li>RQ6: People pay for sex mainly in order to obtain variety and sex without complications and constraints </li></ul><ul><li>RQ7: Technological developments of sexual artefacts have outstripped the previous limits of the human imagination of sexual possibilities </li></ul><ul><li>RQ8: Mental obstacles to the general acceptance of sex with robots will be overcome with time </li></ul>
  39. 42. Answering the problem statement <ul><li>Problem statement PS1 has been answered by the conclusions to research questions RQ1, RQ2, RQ3 and RQ4. </li></ul><ul><li>The overall conclusion for PS1 is that the emotions that humans feel for other humans, for pet animals, for virtual pets, and even for less animal-like artefacts – namely computers -, will be fully extended to embrace the robots of the future </li></ul>
  40. 43. Answering the problem statement <ul><li>Problem statement PS2 has been answered by the conclusions to research questions RQ5, RQ6, RQ7 and RQ8. </li></ul><ul><li>The overall conclusion for PS2 is that the normal bounds of human sexuality will be fully extended to embrace the robots of the future </li></ul>
  41. 44. The Longer Run (2200 - 2500) <ul><li>Hugo de Garis: Superhuman Intelligence </li></ul><ul><li>Two opinions: Cosmist </li></ul><ul><ul><ul><ul><ul><li>Terrens </li></ul></ul></ul></ul></ul>
  42. 45. <ul><li>Hugo de Garis (Utah, USA) </li></ul><ul><li>Ray Kurzweil (M.I.T., USA) </li></ul><ul><li>Hans Moravec (C.M.U., USA) </li></ul><ul><li>Kevin Warwick (Reading, UK) </li></ul><ul><li>Jaap van den Herik (Tilburg, The Netherlands) </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×