Your SlideShare is downloading. ×

20

104
views

Published on

For further details contact: …

For further details contact:

N.RAJASEKARAN B.E M.S 9841091117,9840103301.

IMPULSE TECHNOLOGIES,
Old No 251, New No 304,
2nd Floor,
Arcot road ,
Vadapalani ,
Chennai-26.
www.impulse.net.in
Email: ieeeprojects@yahoo.com/ imbpulse@gmail.com

Published in: Education

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
104
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Impulse Technologies Beacons U to World of technology 044-42133143, 98401 03301,9841091117 ieeeprojects@yahoo.com www.impulse.net.in User-aware Image Tag Refinement via Ternary Semantic Analysis Abstract 1 Large-scale user contributed images with tags are easily available on photo sharing websites. However, the noisy or incomplete correspondence between the images and tags prohibits them from being leveraged for precise image retrieval and effective management. To tackle the problem of tag refinement, we propose a method of Ranking based Multi-correlation Tensor Factorization (RMTF), to jointly model the ternary relations among user, image, and tag, and further to precisely reconstruct the user-aware image-tag associations as a result. Since the user interest or background can be explored to eliminate the ambiguity of image tags, the proposed RMTF is believed to be superior to the traditional solutions, which only focus on the binary image-tag relations. During the model estimation, we employ a ranking based optimization scheme to interpret the tagging data, in which the pair-wise qualitative difference between positive and negative examples is used, instead of the point-wise 0/1 confidence. Specifically, the positive examples are directly decided by the observed user-image-tag interrelations, while the negative ones are collected with respect to the most semantically and contextually irrelevant tags. Extensive experiments on a benchmark Flickr dataset demonstrate the effectiveness of the proposed solution for tag refinement. We also show attractive performances on two potential applications as the by-products of the ternary relation analysis. 1 Your Own Ideas or Any project from any company can be Implementedat Better price (All Projects can be done in Java or DotNet whichever the student wants) 1