10

102 views
80 views

Published on

For further details contact:

N.RAJASEKARAN B.E M.S 9841091117,9840103301.

IMPULSE TECHNOLOGIES,
Old No 251, New No 304,
2nd Floor,
Arcot road ,
Vadapalani ,
Chennai-26.
www.impulse.net.in
Email: ieeeprojects@yahoo.com/ imbpulse@gmail.com

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
102
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

10

  1. 1. Impulse Technologies Beacons U to World of technology 044-42133143, 98401 03301,9841091117 ieeeprojects@yahoo.com www.impulse.net.in Web-and-Personal-Image-Annotation-by-Mining-Label- Correlation-With-Relaxed-Visual-Graph-Embedding Abstract The number of digital images rapidly increases, and it becomes an important challenge to organize these resources effectively. As a way to facilitate image categorization and retrieval, automatic image annotation has received much research attention. Considering that there are a great number of unlabeled images available, it is beneficial to develop an effective mechanism to leverage unlabeled images for large- scale image annotation. Meanwhile, a single image is usually associated with multiple labels, which are inherently correlated to each other. A straightforward method of image annotation is to decompose the problem into multiple independent single-label problems, but this ignores the underlying correlations among different labels. In this paper, we propose a new inductive algorithm for image annotation by integrating label correlation mining and visual similarity mining into a joint framework. We first construct a graph model according to image visual features. A multilabel classifier is then trained by simultaneously uncovering the shared structure common to different labels and the visual graph embedded label prediction matrix for image annotation. We show that the globally optimal solution of the proposed framework can be obtained by performing generalized eigen-decomposition. We apply the proposed framework to both web image annotation and personal album labeling using the NUS-WIDE, MSRA MM 2.0, and Kodak image data sets, and the AUC evaluation metric. Extensive experiments on large-scale image databases collected from the web and personal album show that the proposed algorithm is capable of utilizing both labeled and unlabeled data for image annotation and outperforms other algorithms. Your Own Ideas or Any project from any company can be Implementedat Better price (All Projects can be done in Java or DotNet whichever the student wants) 1

×