Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"

736 views
685 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
736
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
18
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"

  1. 1. IMDEA Energy 4.4.2011 Liquid Fuels fromWater, CO2, and Solar Energy Aldo Steinfeld
  2. 2. Sunlight + H2O + CO2 = Fuels Syngas (H2 , CO)H2O, CO2 Liquid Fuels • Diesel • Jet Fuel • Methanol
  3. 3. 20 MW-electric/ 100 MW-thermal11 MW-electric / 55 MW-thermal(Sevilla, Spain)
  4. 4. H2O  H2 + ½ O2 300 250 H° 200 G°[kJ/mol] 150 100 TS° 50 Equilibrium Mole Fraction p = 1 bar 0 1 H2O 0.9 H -50 1000 2000 3000 4000 5000 0.8 O H2 0.7 Temperature [K] OH 0.6 O2 0.5 0.4 0.3 0.2 0.1 0 2000 2500 3000 3500 4000 Temperature [K]
  5. 5. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 MOox  MOred  O2 MOred 2nd step: Oxidation H2/COH2O/CO2 MOred  H 2O  MOox  H 2 MOred  CO2  MOox  CO To recycle MOox Liquid Fuels
  6. 6. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 ZnO  Zn  0.5O2 Zn 2nd step: Oxidation H2/COH2O/CO2 Zn  H 2O  ZnO  H 2 Zn  CO2  ZnO  CO To recycle MOox Liquid Fuels
  7. 7. Qsolar T = 2000KConcentrated Solar RadiationI = 1 kW/m2 Qrerad C = 5000 ZnO Zn + ½ O2 @ 298 K @ 2000 K WF.C. 35% no h.r.   Qsolar  58% with h.r. WF.C. Qquench Quench QF.C. ½ O2 Zn Ideal H2O Fuel Cell Hydrolyser Qhyd H2 ZnO
  8. 8. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 ZnO  Zn  0.5O2 Zn 2nd step: Oxidation H2/COH2O/CO2 Zn  H 2O  ZnO  H 2 Zn  CO2  ZnO  CO To recycle MOox Liquid Fuels
  9. 9. ZnO/Zn Cycle water/gas rotary inlets/outlets ZnO feeder jointcavity-receiver ZnO Zn+½ O2 quartz windowConcentrated Solar Radiation• Chem. Eng. J. 150, 502-508, 2009.• Materials 3, 4922-4938, 2010.
  10. 10. ZnO/Zn Cycle water/gas rotary inlets/outlets ZnO feeder jointcavity-receiver ZnO Zn+½ O2 quartz window 2400 100Concentrated 2200 90 ZnO-Temperature [K] Solar 2000 80 Radiation 1800 70 Shutter [%] 1600 60 • Treactor = 2000 K 1400 50 • Qsolar = 10 kW 1200 40 • Cpeak = 5880 suns 1000 30 • mZnO = 11 g/min 800 Temperature Temperatu [K] 20 • Zn yield = 50 – 95 % 600 Shutter Shutte [%] 10 0 0 100 200 300 400 500 600 700• Chem. Eng. J. 150, 502-508, 2009. Time [sec]• Materials 3, 4922-4938, 2010.
  11. 11. Solar Reactor Technology 10 kW 100 kW• Heat transfer + kinetic model validated E T  A cp   keff T   k0 e RT  H r T  t        9 feed cycles; 131g each heat chemistry transfer ZnO dissociated (g) # feed-cycles Measured Calculated 3 68.5 ± 5.2 63.9 5 59.5 ± 6.8 54.0 7 148.4 ± 28.8 223.3• AIChE J. 55, 1497-1504, 2009. 9 224.2 ± 49.5 197.1• Chem. Eng. J. 150, 502-508, 2009.• Int. J. Heat Mass Transfer 52, 2444-2452, 2009.
  12. 12. Solar Reactor Technology 100 kW Solar radiative input 100 kW 10 kW Cavity diameter 580 160 mm Cavity length 750 230 mm Outlet diameter 110 15 mm Al2O3-tile thickness 10 7 mm Outer shell diameter 1080 200 mm Aperture diameter 190 60 mm Window diameter 485 160 mm Solar concentration ratio 3500 3500 suns  
  13. 13. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 ZnO  Zn  0.5O2 Zn 2nd step: Oxidation H2/COH2O/CO2 Zn  H 2O  ZnO  H 2 Zn  CO2  ZnO  CO To recycle MOox Liquid Fuels
  14. 14. 2nd step: Syngas Production Aerosol reactor conceptExperimental nanoparticle mixing in-situ hydrolysisSet-up H2O(g) formation H2O H2 H2 ZnO gas analysis filter Zn(g) Zn ZnO steam generator Quench rate: up to 106 K/sreaction 1200 H2O/Arzone injection Zn Temperature [K]H2O + Zn  Ar H2O crucibleZnO + H2 1000T = 573-1263K Tsat 800evaporationzone 600 evaporation reaction zoneZn  Zn(g) 400T = 1263 K 0 20 40 60 80 100 Distance along reactor axis [cm] Balance Ar • Chem. Eng. Sc. 64, 1095-1101, 2009. • Chem. Eng. Sc. 65, 1855-1864, 2010.
  15. 15. 2nd step: Syngas Production Aerosol reactor conceptExperimental nanoparticle mixing in-situ hydrolysisSet-up H2O(g) formation H2O H2 H2 ZnO gas analysis filter Zn(g) Zn ZnO steam 9 generator TR = 973 Kreaction 8 Zn evaporationzone 7H2O + Zn  Ar H2O 6ZnO + H2 10-4 mol/min H2 productionT = 573-1263K 5 4 3evaporationzone 2 = Zn-conversion = 90% 1Zn  Zn(g) 0T = 1263 K 0 10 20 30 40 50 60 70 Reaction time (min) Balance Ar • Chem. Eng. Sc. 64, 1095-1101, 2009. • Chem. Eng. Sc. 65, 1855-1864, 2010.
  16. 16. 2nd step: Syngas Production Aerosol reactor conceptExperimental nanoparticle mixing in-situ hydrolysisSet-up H2O(g) formation H2O H2 H2 ZnO gas analysis filter Zn(g) Zn ZnO steam TR = 823 K generatorreactionzoneH2O + Zn  Ar H2OZnO + H2T = 573-1263KevaporationzoneZn  Zn(g)T = 1263 K Balance Ar • Chem. Eng. Sc. 64, 1095-1101, 2009. • Chem. Eng. Sc. 65, 1855-1864, 2010.
  17. 17. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 MOox  MOred  O2 MOred 2nd step: Oxidation H2/COH2O/CO2 MOred  H 2O  MOox  H 2 MOred  CO2  MOox  CO To recycle MOox Liquid Fuels
  18. 18. DLR, Germany SNL, USA Concentrated solar flux ZnFe2O4 CoFe2O4 N2 + O2 Window H2 O2 O2 N2 H2O Niigata U., Japan CO2 (or steam) CO2 (or steam) NiFe2O4 Gas exhaust CO and CO2 (or H2 and H2O) U. of Colorado, USA Cyclone NiFe2O4 CNRS, France ZnO, SnO2 Draft tubeInternal circulatingfluidized bed(NiFe2O4/m-ZrO2 ) Conical- shaped cap Nitrogen / Steam flow
  19. 19. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2  CeO2  CeO2  O2 MOred 2 2nd step: Oxidation H2/COH2O/CO2 CeO2   H 2O  CeO2   H 2 CeO2   CO2  CeO2   CO To recycle MOox Liquid Fuels
  20. 20. Solar Reactor Technology Science 330, 1797-1801, 2010.
  21. 21. Solar Experimental Set-up Science 330, 1797-1801, 2010.
  22. 22. Solar Experimental Results CO2-splitting H2O-splittingsolar-to-fuel  heating value of fuel produced 0.8%  for CO2 -splitting solar energy input  + energy for inert gas recycling  0.7% for H2O-splitting Science 330, 1797-1801, 2010.
  23. 23. Solar Experimental ResultsSimultaneous splitting of CO2 & H2O • H2O/CO2 = 7 → H2/CO = 1.91 • Fuel/O2 = 2
  24. 24. Solar Experimental Results Simultaneous splitting of CO2 & H2O 0.6 2.65 ml H 2 g -1 2.45 ml H 2 g -1 2.43 ml H 2 g -1 2.29 ml H 2 g -1 2.00 ml H 2 g -1 2.17 ml H 2 g -1 2.10 ml H 2 g -1 2.19 ml H 2 g -1 1.76 ml H 2 g -1 1.92 ml H 2 g -1 Rate [mL min‐1 g‐1] 1.22 ml CO g -1 1.06 ml CO g -1 1.03 ml CO g -1 0.99 ml CO g -1 2.00 ml CO g -1 0.90 ml CO g -1 0.91 ml CO g -1 0.83 ml CO g -1 0.76 ml CO g -1 0.74 ml CO g -1 0.5 H2/CO ratio: 2.17 H2/CO ratio: 2.31 H2/CO ratio: 2.36 H2/CO ratio: 2.32 H2/CO ratio: 2.01 H2/CO ratio: 2.43 H2/CO ratio: 2.28 H2/CO ratio: 2.63 H2/CO ratio: 2.31 H2/CO ratio: 2.59 0.4 0.3 2.14 ml O 2 1.73 ml O 2 1.69 ml O 2 1.46 ml O 2 1.56 ml O 2 1.48 ml O 2 1.34 ml O 2 1.28 ml O 2 1.23 ml O 2 1.23 ml O 2 0.2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 0.1 0 0 50 100 150 200 250 300 350 400 450Temperature [K] 1900 1700 1500 1300 1100 900 700 0 50 100 150 200 250 300 350 400 450 Time [min]
  25. 25. RPCI s • average pore diameter = 2.54 mm • total porosity = 92% • specific surface = 11 mm-1 Reticulate Porous Ceramic30 mm 35 mm 4 3 mm • ASME Journal of Heat Transfer 132, 023305 1-9, 2010.
  26. 26. Radiative properties of RPC dI   s 4     I      Ib   I  d i ds 4  0 I          i  Change of attenuation augmentation augmentation radiation by by by intensity absorption+scattering internal emission incoming scattering s MC ray tracing I s  exp  -  s  I0   0.22 cm-1 • ASME Journal of Heat Transfer 132, 023305 1-9, 2010.
  27. 27. Fluid transport properties across RPC • Navier-Stokes by DNS • 0.2<Re<200 • 0.1<Pr<10  p   uD  F  uD 2 K pd 2  c0  c1 Re  uD K  1.353 10-7 m 2 F  444.02 m 1• Int. J. Heat and Fluid Flow 29, 315–326, 2008
  28. 28. Heat transfer transport across RPC • Navier-Stokes by DNS • 0.2<Re<200 • 0.1<Pr<10 z z  q dAsf hsf  z Tlm  Asf Nu  1.56  0.6 Re0.56 Pr 0.47• J. Heat Transfer 130, 032602, 2008.• J. Heat Transfer, 132, 023305 1-9, 2010
  29. 29. CO2 Capture from Air calcination/carbonation CaO + CO2 CaCO3 nCO2 ,released CO2-depleted air / CO2  99% nCO2 ,captured 12000 900 T=390 °C / 850°C 850°C Calcination Calcination Calcination Calcination Calcination 800 Temperature [°C] 10000 700 Carbonation Carbonation Carbonation Carbonation Carbonation 8000 600 CO2 [ppm] 500 atmospheric air 6000 400 390°C 4000 300 200 2000 100 input 390 ppm 0 0 1000 2000 3000 4000 5000 6000 Time [sec]Chem. Eng. J. 146, 244–248, 2009.
  30. 30. • Diamine-functionalized silica gel• CO2 adsorption from air at 25 °C and 1 bar• Pure CO2 desorption at 74-90 °C and 10-150 mbar
  31. 31. Solar Energy Concentrated Solar Energy adsorption reductionatmospheric CO2 catalytic air syngas conversion desorption oxidation H2O CO2-depleted liquid fuels air for transportation H2O CO2
  32. 32. Jan Wurzbacher Tina DaumChris Gebald Christian WieckertRoman Bader Ivo AlxneitGiw Zanganeh Daniel MayerClemens Suter Alwin FreiMen Wirz Yvonne BauerleAnastasia Stamatiou Christian HutterEmilie Zermatten Peter SchallerJonathan Scheffe Tony MeierPhilipp Furler Marc ChambonGilles Maag Daniel WuilleminMichael KruesiIllias HischierWilly VillasmilPhilipp HaueterMatt RoesleTom CooperPeter LoutzenhiserDominic HerrmannEnrico GuglielminiNic Piatkowski

×