Your SlideShare is downloading. ×
Agricultural productivity in Ethiopian Nile and interventions
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Agricultural productivity in Ethiopian Nile and interventions

905
views

Published on

Poster by Erkossa, T. and Awulachew, S.B. for: CPWF Nile Basin Focal Project Final Workshop, Dar es Salaam, Tanzania, 9 December 2009.

Poster by Erkossa, T. and Awulachew, S.B. for: CPWF Nile Basin Focal Project Final Workshop, Dar es Salaam, Tanzania, 9 December 2009.

Published in: Technology

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
905
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
10
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. FU Berlin Improved Agricultural Water Management In the Nile Basin Agricultural Productivity in Ethiopian Nile and Interventions T. Erkossa and S. B. Awulachew International Water Management Institute Introduction Major reasons for low productivity Ethiopian  part  of  Nile  is  dominated  by  • Poor nutrient & water storage capacity of soils due to land degradation  mixed  crop‐livestock  rainfed agriculture.  • Water logging of Vertisols Agricultural  productivity  in  the  area  is  low  • Shortage and uneven distribution of rainfall, due to: high temporal and spatial variation  • Lack of suitable technologies in  climate,  sever  land  degradation  (Figure  L o c a tio n V a rie ty Im p ro v e d T ra d itio n a l % p ra c tic e p ra c tic e in c re m e n t 1);  lack  of  appropriate  technologies;  poor  J im m a lo c a l 3 7 .3 2 8 .4 32 infrastructure & limited extension services,  UCB 4 6 .1 2 5 .9 78 etc. Interventions for sustained & increased  B e le te c h 3 9 .8 2 6 .3 51 B H _140 4 5 .9 2 6 .4 74 productivity  and  reverse  the  current  state  B H -6 6 0 5 7 .6 2 5 .8 124 of  land  degradation  are  needed.    This  k u le n i 4 6 .2 2 6 .5 75 Adet B H -5 4 0 4 8 .9 6 2 9 .3 67 poster shows the result of study conducted  k u le n i 8 1 .8 5 0 .6 61 to  characterize  the  prevailing  farming  Paw e B H -5 3 0 8 1 .7 4 1 .7 96 B H -1 4 0 7 6 .7 4 1 .7 84 systems, identify suitable technologies and  B ako B H -1 4 0 3 4 .2 29 18 assess their possible impacts. B e le te c h 3 8 .2 29 32 Table 2: Effect of improve management practices on productivity of maize Fig. 1: Land degradation major challenge Methodology Impact of Technologies •Improved agronomic practices increased  productivity of maize by 124% at  Farming  systems  in  the  basin  is  Jimma and by 96% at Pawe (Table 2) characterized based on: agro‐ecology,  •Use of compost increased barley and wheat yield from 1 ton ha‐1 to 2.5 tons  soil,  major  crops  grown,  degree  of  ha‐1 (Figure 4) crop‐livestock interaction •Mineral fertilizers increased  yield of maize from about 1.7 tons ha‐1 to 2.8  Current  productivity  of  farming  tons ha‐1 (Figure 4) systems  examined  &  productivity  •Use of tie‐ridges  increased grain yield of maize, sorghum, wheat and mung limiting factors identified beans by 50 to over 100% as compared to planting on flat beds (Figure 5) Effects  of    technologies  on  •Other studies showed draining the water logged Vertisols can increase the  productivity demonstrated productivity of crops like wheat by over 100% Results • 2  major  farming  systems;  mixed  crop‐ Figure 2:The major farming system in BNB livestock  &  pastoral/  agropastoral identified (Fig. 2 & 3) • Major  farming  systems  further  subdivided to make ten subsystems • Cereal  based  system  composed  of  single  cropping,  double  cropping  and  shifting cultivation sub‐systems • Average  crop  productivity  under  current management is less than 1 ton  Figure 4: Effect of organic and inorganic Figure 5: Effect of tie-ridges on productivity of ha‐1  (Table 1)  some crops planted in furrows of tied ridges fertilizers on yield of major cereals at Kobbo (a dry area in Nile basin) (Source: Source: Edwards, et al., 2006 Fig. 3 : Distribution of the farming systems George et al., 2001) Table 1 Current productivity of the farming systems (100kg ha-1) (CSA 2007) Conclusion Farming system Tef Barley Wheat Maize Sorghum Finger Faba Field Average • Farming systems can be used as basis for technology scaling up Millet bean pea Tef based single cropping 8.24 9.21 10.4 16.8 9.18 4.98 10.33 6.83 9.50 • Use  of  suitable  crop  varieties  and  species,  soil  and  water  Barley based single cropping 8.97 14.81 12.23 18.05 12.88 10.97 12.06 8.78 12.34 management  practices  significantly  increase  crop  &    livestock  Sorghum based single cropping 8.66 10.28 11.62 14.01 11.96 9.59 11.87 9.09 10.89 productivity Sorghum based shifting 7.26 4.89 6.46 20.68 10.93 6.53 6.00 2.66 8.18 • Integrated  application  of  technologies  can  maximize  the  cultivation benefits of the interventions Maize based schifting cultivation 5.77 5.18 6.53 20.38 13.72 6.86 5.17 3.69 8.41 • The  increased  crop  and  livestock  productivity  improves  the  Maize based single cropping 7.28 6.25 7.13 22.04 12.92 9.89 6.81 4.18 9.56 livelihood  of  the  farming  communities  and  ease  the  pressure  Coffee-maize complex 8.21 7.36 8.05 22.05 14.72 9.08 7.77 5.52 10.35 on  marginal  lands,  thus  alleviating  the  current  extent  of  land  Barley based double cropping 7.31 9.47 9.90 8.23 8.86 1.60 10.30 6.91 7.82 Enset-root crops complex 5.70 5.11 6.52 17.41 10.12 3.58 4.93 4.36 7.22 degradation Average 7.49 8.06 8.76 19.15 11.52 7.01 8.36 5.78 9.36 For more information contact: (e-mail) Adress: t.erskossa@cgiar.org http://www.iwmi.cgiar.org/africa/east_africa/

×