SlideShare a Scribd company logo
1 of 8
GLOBALSOFT TECHNOLOGIES 
IEEE PROJECTS & SOFTWARE DEVELOPMENTS 
IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE 
BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS 
CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 
Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmai l.com 
Secure Data Retrieval for Decentralized Disruption-Tolerant 
Military Networks 
ABSTRACT: 
Mobile nodes in military environments such as a battlefield or a hostile region are 
likely to suffer from intermittent network connectivity and frequent partitions. 
Disruption-tolerant network (DTN) technologies are becoming successful solutions 
that allow wireless devices carried by soldiers to communicate with each other and 
access the confidential information or command reliably by exploiting external 
storage nodes. Some of the most challenging issues in this scenario are the 
enforcement of authorization policies and the policies update for secure data 
retrieval. Ciphertext-policy attribute-based encryption (CP-ABE) is a promising 
cryptographic solution to the access control issues. However, the problem of 
applying CP-ABE in decentralized DTNs introduces several security and privacy 
challenges with regard to the attribute revocation, key escrow, and coordination of 
attributes issued from different authorities. In this paper, we propose a secure data 
retrieval scheme using CP-ABE for decentralized DTNs where multiple key 
authorities manage their attributes independently. We demonstrate how to apply
the proposed mechanism to securely and efficiently manage the confidential data 
distributed in the disruption-tolerant military network. 
EXISTING SYSTEM: 
The concept of attribute-based encryption (ABE) is a promising approach that 
fulfills the requirements for secure data retrieval in DTNs. ABE features a 
mechanism that enables an access control over encrypted data using access policies 
and ascribed attributes among private keys and ciphertexts. Especially, ciphertext-policy 
ABE (CP-ABE) provides a scalable way of encrypting data such that the 
encryptor defines the attribute set that the decryptor needs to possess in order to 
decrypt the ciphertext. Thus, different users are allowed to decrypt different pieces 
of data per the security policy. 
DISADVANTAGES OF EXISTING SYSTEM: 
 The problem of applying the ABE to DTNs introduces several security and 
privacy challenges. Since some users may change their associated attributes 
at some point (for example, moving their region), or some private keys 
might be compromised, key revocation (or update) for each attribute is 
necessary in order to make systems secure. 
 However, this issue is even more difficult, especially in ABE systems, since 
each attribute is conceivably shared by multiple users (henceforth, we refer 
to such a collection of users as an attribute group)
 Another challenge is the key escrow problem. In CP-ABE, the key authority 
generates private keys of users by applying the authority’s master secret 
keys to users’ associated set of attributes. 
 The last challenge is the coordination of attributes issued from different 
authorities. When multiple authorities manage and issue attributes keys to 
users independently with their own master secrets, it is very hard to define 
fine-grained access policies over attributes issued from different authorities. 
PROPOSED SYSTEM: 
In this paper, we propose an attribute-based secure data retrieval scheme using CP-ABE 
for decentralized DTNs. The proposed scheme features the following 
achievements. First, immediate attribute revocation enhances backward/forward 
secrecy of confidential data by reducing the windows of vulnerability. Second, 
encryptors can define a fine-grained access policy using any monotone access 
structure under attributes issued from any chosen set of authorities. Third, the key 
escrow problem is resolved by an escrow-free key issuing protocol that exploits the 
characteristic of the decentralized DTN architecture. The key issuing protocol 
generates and issues user secret keys by performing a secure two-party 
computation (2PC) protocol among the key authorities with their own master 
secrets. The 2PC protocol deters the key authorities from obtaining any master 
secret information of each other such that none of them could generate the whole 
set of user keys alone. Thus, users are not required to fully trust the authorities in 
order to protect their data to be shared. The data confidentiality and privacy can be 
cryptographically enforced against any curious key authorities or data storage 
nodes in the proposed scheme.
ADVANTAGES OF PROPOSED SYSTEM: 
 Data confidentiality: Unauthorized users who do not have enough credentials 
satisfying the access policy should be deterred from accessing the plain data in 
the storage node. In addition, unauthorized access from the storage node or 
key authorities should be also prevented. 
 Collusion-resistance: If multiple users collude, they may be able to decrypt a 
ciphertext by combining their attributes even if each of the users cannot 
decrypt the ciphertext alone. 
 Backward and forward Secrecy: In the context of ABE, backward secrecy 
means that any user who comes to hold an attribute (that satisfies the access 
policy) should be prevented from accessing the plaintext of the previous data 
exchanged before he holds the attribute. On the other hand, forward secrecy 
means that any user who drops an attribute should be prevented from 
accessing the plaintext of the subsequent data exchanged after he drops the 
attribute, unless the other valid attributes that he is holding satisfy the access 
policy. 
SYSTEM ARCHITECTURE:
MODULES: 
1. Key Authorities 
2. Storage Nodes 
3. Sender 
4. User 
MODULES DESCRIPTION: 
Key Authorities: 
They are key generation centers that generate public/secret parameters for CP-ABE. 
The key authorities consist of a central authority and multiple local
authorities. We assume that there are secure and reliable communication channels 
between a central authority and each local authority during the initial key setup and 
generation phase. Each local authority manages different attributes and issues 
corresponding attribute keys to users. They grant differential access rights to 
individual users based on the users’ attributes. The key authorities are assumed to 
be honest-but-curious. That is, they will honestly execute the assigned tasks in the 
system; however they would like to learn information of encrypted contents as 
much as possible. 
Storage node: 
This is an entity that stores data from senders and provide corresponding access to 
users. It may be mobile or static. Similar to the previous schemes, we also assume 
the storage node to be semi-trusted that is honest-but-curious. 
Sender: 
This is an entity who owns confidential messages or data (e.g., a commander) and 
wishes to store them into the external data storage node for ease of sharing or for 
reliable delivery to users in the extreme networking environments. A sender is 
responsible for defining (attribute based) access policy and enforcing it on its own 
data by encrypting the data under the policy before storing it to the storage node. 
User: 
This is a mobile node who wants to access the data stored at the storage node (e.g., 
a soldier). If a user possesses a set of attributes satisfying the access policy of the 
encrypted data defined by the sender, and is not revoked in any of the attributes, 
then he will be able to decrypt the ciphertext and obtain the data.
SYSTEM REQUIREMENTS: 
HARDWARE REQUIREMENTS: 
 System : Pentium IV 2.4 GHz. 
 Hard Disk : 40 GB. 
 Floppy Drive : 1.44 Mb. 
 Monitor : 15 VGA Colour. 
 Mouse : Logitech. 
 Ram : 512 Mb. 
SOFTWARE REQUIREMENTS: 
 Operating system : Windows XP/7. 
 Coding Language : ASP.net, C#.net 
 Tool : Visual Studio 2010 
 Database : SQL SERVER 2008 
REFERENCE: 
Junbeom Hur and Kyungtae Kang, Member, IEEE, ACM “Secure Data Retrieval 
for Decentralized Disruption-Tolerant Military Networks”-IEEE/ACM 
TRANSACTIONS ON NETWORKING, VOL. 22, NO. 1, FEBRUARY 2014.
IEEE 2014 DOTNET NETWORKING PROJECTS Secure data-retrieval-for-decentralized-disruption-tolerant-military-networks

More Related Content

What's hot

Authentic Data Access Scheme for Variant Disruption- Tolerant Networks
Authentic Data Access Scheme for Variant Disruption- Tolerant NetworksAuthentic Data Access Scheme for Variant Disruption- Tolerant Networks
Authentic Data Access Scheme for Variant Disruption- Tolerant NetworksEditor IJCATR
 
766 a secure-data-sharing-in-cloud-storage-with-independent-key-generation-ce...
766 a secure-data-sharing-in-cloud-storage-with-independent-key-generation-ce...766 a secure-data-sharing-in-cloud-storage-with-independent-key-generation-ce...
766 a secure-data-sharing-in-cloud-storage-with-independent-key-generation-ce...revathirram
 
Secure and efficient management of confidential data in the decentralized dis...
Secure and efficient management of confidential data in the decentralized dis...Secure and efficient management of confidential data in the decentralized dis...
Secure and efficient management of confidential data in the decentralized dis...theijes
 
A review on key aggregate cryptosystem for scalable data sharing in cloud sto...
A review on key aggregate cryptosystem for scalable data sharing in cloud sto...A review on key aggregate cryptosystem for scalable data sharing in cloud sto...
A review on key aggregate cryptosystem for scalable data sharing in cloud sto...eSAT Journals
 
IJSRED-V2I3P52
IJSRED-V2I3P52IJSRED-V2I3P52
IJSRED-V2I3P52IJSRED
 
KEY AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD
KEY AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUDKEY AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD
KEY AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUDNaseem nisar
 
Hierarchical Key Agreement Protocol for Wireless Sensor Networks
Hierarchical Key Agreement Protocol for Wireless Sensor NetworksHierarchical Key Agreement Protocol for Wireless Sensor Networks
Hierarchical Key Agreement Protocol for Wireless Sensor Networksidescitation
 
Security Analysis and Improvement for IEEE 802.11i
Security Analysis and Improvement for IEEE 802.11iSecurity Analysis and Improvement for IEEE 802.11i
Security Analysis and Improvement for IEEE 802.11iinventionjournals
 
Key aggregate searchable encryption (kase) for group data sharing via cloud s...
Key aggregate searchable encryption (kase) for group data sharing via cloud s...Key aggregate searchable encryption (kase) for group data sharing via cloud s...
Key aggregate searchable encryption (kase) for group data sharing via cloud s...Pvrtechnologies Nellore
 
File transfer using cryptography techniques
File transfer using cryptography techniquesFile transfer using cryptography techniques
File transfer using cryptography techniquesmiteshkumar82
 
F018133640.key aggregate paper
F018133640.key aggregate paperF018133640.key aggregate paper
F018133640.key aggregate paperIOSR Journals
 
A Review on Key-Aggregate Cryptosystem for Climbable Knowledge Sharing in Clo...
A Review on Key-Aggregate Cryptosystem for Climbable Knowledge Sharing in Clo...A Review on Key-Aggregate Cryptosystem for Climbable Knowledge Sharing in Clo...
A Review on Key-Aggregate Cryptosystem for Climbable Knowledge Sharing in Clo...Editor IJCATR
 
Securing Data retrieval using CPABE scheme with Two Party Computation in DTN ...
Securing Data retrieval using CPABE scheme with Two Party Computation in DTN ...Securing Data retrieval using CPABE scheme with Two Party Computation in DTN ...
Securing Data retrieval using CPABE scheme with Two Party Computation in DTN ...IRJET Journal
 
efficient authentication for mobile and pervasive computing
efficient authentication for mobile and pervasive computingefficient authentication for mobile and pervasive computing
efficient authentication for mobile and pervasive computingswathi78
 
Vtu network security(10 ec832) unit 2 notes..
Vtu network security(10 ec832) unit 2 notes..Vtu network security(10 ec832) unit 2 notes..
Vtu network security(10 ec832) unit 2 notes..Jayanth Dwijesh H P
 
Decentralized access control of data stored in cloud using key policy attribu...
Decentralized access control of data stored in cloud using key policy attribu...Decentralized access control of data stored in cloud using key policy attribu...
Decentralized access control of data stored in cloud using key policy attribu...Adz91 Digital Ads Pvt Ltd
 
Efficient authentication for mobile and pervasive computing
Efficient authentication for mobile and pervasive computingEfficient authentication for mobile and pervasive computing
Efficient authentication for mobile and pervasive computingIGEEKS TECHNOLOGIES
 

What's hot (19)

Authentic Data Access Scheme for Variant Disruption- Tolerant Networks
Authentic Data Access Scheme for Variant Disruption- Tolerant NetworksAuthentic Data Access Scheme for Variant Disruption- Tolerant Networks
Authentic Data Access Scheme for Variant Disruption- Tolerant Networks
 
766 a secure-data-sharing-in-cloud-storage-with-independent-key-generation-ce...
766 a secure-data-sharing-in-cloud-storage-with-independent-key-generation-ce...766 a secure-data-sharing-in-cloud-storage-with-independent-key-generation-ce...
766 a secure-data-sharing-in-cloud-storage-with-independent-key-generation-ce...
 
Secure and efficient management of confidential data in the decentralized dis...
Secure and efficient management of confidential data in the decentralized dis...Secure and efficient management of confidential data in the decentralized dis...
Secure and efficient management of confidential data in the decentralized dis...
 
A review on key aggregate cryptosystem for scalable data sharing in cloud sto...
A review on key aggregate cryptosystem for scalable data sharing in cloud sto...A review on key aggregate cryptosystem for scalable data sharing in cloud sto...
A review on key aggregate cryptosystem for scalable data sharing in cloud sto...
 
V5 i7 0169
V5 i7 0169V5 i7 0169
V5 i7 0169
 
IJSRED-V2I3P52
IJSRED-V2I3P52IJSRED-V2I3P52
IJSRED-V2I3P52
 
KEY AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD
KEY AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUDKEY AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD
KEY AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD
 
Hierarchical Key Agreement Protocol for Wireless Sensor Networks
Hierarchical Key Agreement Protocol for Wireless Sensor NetworksHierarchical Key Agreement Protocol for Wireless Sensor Networks
Hierarchical Key Agreement Protocol for Wireless Sensor Networks
 
Security Analysis and Improvement for IEEE 802.11i
Security Analysis and Improvement for IEEE 802.11iSecurity Analysis and Improvement for IEEE 802.11i
Security Analysis and Improvement for IEEE 802.11i
 
Key aggregate searchable encryption (kase) for group data sharing via cloud s...
Key aggregate searchable encryption (kase) for group data sharing via cloud s...Key aggregate searchable encryption (kase) for group data sharing via cloud s...
Key aggregate searchable encryption (kase) for group data sharing via cloud s...
 
File transfer using cryptography techniques
File transfer using cryptography techniquesFile transfer using cryptography techniques
File transfer using cryptography techniques
 
F018133640.key aggregate paper
F018133640.key aggregate paperF018133640.key aggregate paper
F018133640.key aggregate paper
 
A Review on Key-Aggregate Cryptosystem for Climbable Knowledge Sharing in Clo...
A Review on Key-Aggregate Cryptosystem for Climbable Knowledge Sharing in Clo...A Review on Key-Aggregate Cryptosystem for Climbable Knowledge Sharing in Clo...
A Review on Key-Aggregate Cryptosystem for Climbable Knowledge Sharing in Clo...
 
Securing Data retrieval using CPABE scheme with Two Party Computation in DTN ...
Securing Data retrieval using CPABE scheme with Two Party Computation in DTN ...Securing Data retrieval using CPABE scheme with Two Party Computation in DTN ...
Securing Data retrieval using CPABE scheme with Two Party Computation in DTN ...
 
J018145862
J018145862J018145862
J018145862
 
efficient authentication for mobile and pervasive computing
efficient authentication for mobile and pervasive computingefficient authentication for mobile and pervasive computing
efficient authentication for mobile and pervasive computing
 
Vtu network security(10 ec832) unit 2 notes..
Vtu network security(10 ec832) unit 2 notes..Vtu network security(10 ec832) unit 2 notes..
Vtu network security(10 ec832) unit 2 notes..
 
Decentralized access control of data stored in cloud using key policy attribu...
Decentralized access control of data stored in cloud using key policy attribu...Decentralized access control of data stored in cloud using key policy attribu...
Decentralized access control of data stored in cloud using key policy attribu...
 
Efficient authentication for mobile and pervasive computing
Efficient authentication for mobile and pervasive computingEfficient authentication for mobile and pervasive computing
Efficient authentication for mobile and pervasive computing
 

Similar to IEEE 2014 DOTNET NETWORKING PROJECTS Secure data-retrieval-for-decentralized-disruption-tolerant-military-networks

Application of CP-ABE Scheme in Data Sharing System for confidentiality
Application of CP-ABE Scheme in Data Sharing System for confidentialityApplication of CP-ABE Scheme in Data Sharing System for confidentiality
Application of CP-ABE Scheme in Data Sharing System for confidentialityEditor IJMTER
 
Attribute Based Secure Information Recovery Retrieval System for Decentralize...
Attribute Based Secure Information Recovery Retrieval System for Decentralize...Attribute Based Secure Information Recovery Retrieval System for Decentralize...
Attribute Based Secure Information Recovery Retrieval System for Decentralize...IRJET Journal
 
Privacypreservingdelegatedaccesscontrolinpublicclouds
Privacypreservingdelegatedaccesscontrolinpublicclouds Privacypreservingdelegatedaccesscontrolinpublicclouds
Privacypreservingdelegatedaccesscontrolinpublicclouds Shakas Technologies
 
Privacypreservingdelegatedaccesscontrolinpublicclouds 141112073315-conversion...
Privacypreservingdelegatedaccesscontrolinpublicclouds 141112073315-conversion...Privacypreservingdelegatedaccesscontrolinpublicclouds 141112073315-conversion...
Privacypreservingdelegatedaccesscontrolinpublicclouds 141112073315-conversion...Shakas Technologies
 
Investigation on Revocable Fine-grained Access Control Scheme for Multi-Autho...
Investigation on Revocable Fine-grained Access Control Scheme for Multi-Autho...Investigation on Revocable Fine-grained Access Control Scheme for Multi-Autho...
Investigation on Revocable Fine-grained Access Control Scheme for Multi-Autho...IJCERT JOURNAL
 
Cyber security workshop talk.pptx
Cyber security workshop talk.pptxCyber security workshop talk.pptx
Cyber security workshop talk.pptxkamalakantas
 
A Personal Privacy Data Protection Scheme for Encryption and Revocation of Hi...
A Personal Privacy Data Protection Scheme for Encryption and Revocation of Hi...A Personal Privacy Data Protection Scheme for Encryption and Revocation of Hi...
A Personal Privacy Data Protection Scheme for Encryption and Revocation of Hi...Shakas Technologies
 
Privacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public cloudsPrivacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public cloudsJPINFOTECH JAYAPRAKASH
 
IRJET- Compress and Secure Data Sharing for Mobile Cloud Computing
IRJET- Compress and Secure Data Sharing for Mobile Cloud ComputingIRJET- Compress and Secure Data Sharing for Mobile Cloud Computing
IRJET- Compress and Secure Data Sharing for Mobile Cloud ComputingIRJET Journal
 
Iaetsd a framework for secure data
Iaetsd a framework for secure dataIaetsd a framework for secure data
Iaetsd a framework for secure dataIaetsd Iaetsd
 
Privacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public cloudsPrivacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public cloudsJPINFOTECH JAYAPRAKASH
 
Psdot 12 a secure erasure code-based cloud storage
Psdot 12 a secure erasure code-based cloud storagePsdot 12 a secure erasure code-based cloud storage
Psdot 12 a secure erasure code-based cloud storageZTech Proje
 
Privacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public cloudsPrivacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public cloudsIEEEFINALYEARPROJECTS
 
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving delegated access con...
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving delegated access con...JAVA 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving delegated access con...
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving delegated access con...IEEEGLOBALSOFTTECHNOLOGIES
 
Multi Owner Data Sharing & Outsourced Revocation Using Identity Based Encrypt...
Multi Owner Data Sharing & Outsourced Revocation Using Identity Based Encrypt...Multi Owner Data Sharing & Outsourced Revocation Using Identity Based Encrypt...
Multi Owner Data Sharing & Outsourced Revocation Using Identity Based Encrypt...Eswar Publications
 
documentation for identity based secure distrbuted data storage schemes
documentation for identity based secure distrbuted data storage schemesdocumentation for identity based secure distrbuted data storage schemes
documentation for identity based secure distrbuted data storage schemesSahithi Naraparaju
 
IRJET- An Efficient Data Sharing Scheme in Mobile Cloud Computing using Attri...
IRJET- An Efficient Data Sharing Scheme in Mobile Cloud Computing using Attri...IRJET- An Efficient Data Sharing Scheme in Mobile Cloud Computing using Attri...
IRJET- An Efficient Data Sharing Scheme in Mobile Cloud Computing using Attri...IRJET Journal
 
Achieving Secure, sclable and finegrained Cloud computing report
Achieving Secure, sclable and finegrained Cloud computing reportAchieving Secure, sclable and finegrained Cloud computing report
Achieving Secure, sclable and finegrained Cloud computing reportKiran Girase
 

Similar to IEEE 2014 DOTNET NETWORKING PROJECTS Secure data-retrieval-for-decentralized-disruption-tolerant-military-networks (20)

Ijcatr04051007
Ijcatr04051007Ijcatr04051007
Ijcatr04051007
 
Application of CP-ABE Scheme in Data Sharing System for confidentiality
Application of CP-ABE Scheme in Data Sharing System for confidentialityApplication of CP-ABE Scheme in Data Sharing System for confidentiality
Application of CP-ABE Scheme in Data Sharing System for confidentiality
 
Paper2
Paper2Paper2
Paper2
 
Attribute Based Secure Information Recovery Retrieval System for Decentralize...
Attribute Based Secure Information Recovery Retrieval System for Decentralize...Attribute Based Secure Information Recovery Retrieval System for Decentralize...
Attribute Based Secure Information Recovery Retrieval System for Decentralize...
 
Privacypreservingdelegatedaccesscontrolinpublicclouds
Privacypreservingdelegatedaccesscontrolinpublicclouds Privacypreservingdelegatedaccesscontrolinpublicclouds
Privacypreservingdelegatedaccesscontrolinpublicclouds
 
Privacypreservingdelegatedaccesscontrolinpublicclouds 141112073315-conversion...
Privacypreservingdelegatedaccesscontrolinpublicclouds 141112073315-conversion...Privacypreservingdelegatedaccesscontrolinpublicclouds 141112073315-conversion...
Privacypreservingdelegatedaccesscontrolinpublicclouds 141112073315-conversion...
 
Investigation on Revocable Fine-grained Access Control Scheme for Multi-Autho...
Investigation on Revocable Fine-grained Access Control Scheme for Multi-Autho...Investigation on Revocable Fine-grained Access Control Scheme for Multi-Autho...
Investigation on Revocable Fine-grained Access Control Scheme for Multi-Autho...
 
Cyber security workshop talk.pptx
Cyber security workshop talk.pptxCyber security workshop talk.pptx
Cyber security workshop talk.pptx
 
A Personal Privacy Data Protection Scheme for Encryption and Revocation of Hi...
A Personal Privacy Data Protection Scheme for Encryption and Revocation of Hi...A Personal Privacy Data Protection Scheme for Encryption and Revocation of Hi...
A Personal Privacy Data Protection Scheme for Encryption and Revocation of Hi...
 
Privacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public cloudsPrivacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public clouds
 
IRJET- Compress and Secure Data Sharing for Mobile Cloud Computing
IRJET- Compress and Secure Data Sharing for Mobile Cloud ComputingIRJET- Compress and Secure Data Sharing for Mobile Cloud Computing
IRJET- Compress and Secure Data Sharing for Mobile Cloud Computing
 
Iaetsd a framework for secure data
Iaetsd a framework for secure dataIaetsd a framework for secure data
Iaetsd a framework for secure data
 
Privacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public cloudsPrivacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public clouds
 
Psdot 12 a secure erasure code-based cloud storage
Psdot 12 a secure erasure code-based cloud storagePsdot 12 a secure erasure code-based cloud storage
Psdot 12 a secure erasure code-based cloud storage
 
Privacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public cloudsPrivacy preserving delegated access control in public clouds
Privacy preserving delegated access control in public clouds
 
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving delegated access con...
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving delegated access con...JAVA 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving delegated access con...
JAVA 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving delegated access con...
 
Multi Owner Data Sharing & Outsourced Revocation Using Identity Based Encrypt...
Multi Owner Data Sharing & Outsourced Revocation Using Identity Based Encrypt...Multi Owner Data Sharing & Outsourced Revocation Using Identity Based Encrypt...
Multi Owner Data Sharing & Outsourced Revocation Using Identity Based Encrypt...
 
documentation for identity based secure distrbuted data storage schemes
documentation for identity based secure distrbuted data storage schemesdocumentation for identity based secure distrbuted data storage schemes
documentation for identity based secure distrbuted data storage schemes
 
IRJET- An Efficient Data Sharing Scheme in Mobile Cloud Computing using Attri...
IRJET- An Efficient Data Sharing Scheme in Mobile Cloud Computing using Attri...IRJET- An Efficient Data Sharing Scheme in Mobile Cloud Computing using Attri...
IRJET- An Efficient Data Sharing Scheme in Mobile Cloud Computing using Attri...
 
Achieving Secure, sclable and finegrained Cloud computing report
Achieving Secure, sclable and finegrained Cloud computing reportAchieving Secure, sclable and finegrained Cloud computing report
Achieving Secure, sclable and finegrained Cloud computing report
 

More from IEEEMEMTECHSTUDENTPROJECTS

IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Web image re ranking using query-sp...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Web image re ranking using query-sp...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Web image re ranking using query-sp...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Web image re ranking using query-sp...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Scalable analytics for iaa s cloud ...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Scalable analytics for iaa s cloud ...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Scalable analytics for iaa s cloud ...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Scalable analytics for iaa s cloud ...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Qos aware geographic opportunistic ...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Qos aware geographic opportunistic ...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Qos aware geographic opportunistic ...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Qos aware geographic opportunistic ...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Fuzzy keyword search over
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Fuzzy keyword search overIEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Fuzzy keyword search over
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Fuzzy keyword search overIEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Dynamic cloud pricing for revenue m...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Dynamic cloud pricing for revenue m...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Dynamic cloud pricing for revenue m...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Dynamic cloud pricing for revenue m...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Distributed -concurrent--and-indepe...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Distributed -concurrent--and-indepe...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Distributed -concurrent--and-indepe...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Distributed -concurrent--and-indepe...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Balancing performance--accuracy--an...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Balancing performance--accuracy--an...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Balancing performance--accuracy--an...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Balancing performance--accuracy--an...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Automatic scaling of internet appli...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Automatic scaling of internet appli...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Automatic scaling of internet appli...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Automatic scaling of internet appli...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A scientometric analysis of cloud c...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A scientometric analysis of cloud c...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A scientometric analysis of cloud c...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A scientometric analysis of cloud c...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A mechanism design approach to reso...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A mechanism design approach to reso...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A mechanism design approach to reso...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A mechanism design approach to reso...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Smart dc mobility prediction based...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Smart dc mobility prediction based...IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Smart dc mobility prediction based...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Smart dc mobility prediction based...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Preserving location-privacy-in-geo...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Preserving location-privacy-in-geo...IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Preserving location-privacy-in-geo...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Preserving location-privacy-in-geo...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Autonomous mobile-mesh-networks
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Autonomous mobile-mesh-networksIEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Autonomous mobile-mesh-networks
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Autonomous mobile-mesh-networksIEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS A qos-oriented-distributed-routing...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS A qos-oriented-distributed-routing...IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS A qos-oriented-distributed-routing...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS A qos-oriented-distributed-routing...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS An active resource orchestration f...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS An active resource orchestration f...IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS An active resource orchestration f...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS An active resource orchestration f...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET NETWORKING PROJECTS Qos aware geographic opportunistic routi...
IEEE 2014 DOTNET NETWORKING PROJECTS Qos aware geographic opportunistic routi...IEEE 2014 DOTNET NETWORKING PROJECTS Qos aware geographic opportunistic routi...
IEEE 2014 DOTNET NETWORKING PROJECTS Qos aware geographic opportunistic routi...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET NETWORKING PROJECTS Pricing under constraints_in_access_netw...
IEEE 2014 DOTNET NETWORKING PROJECTS Pricing under constraints_in_access_netw...IEEE 2014 DOTNET NETWORKING PROJECTS Pricing under constraints_in_access_netw...
IEEE 2014 DOTNET NETWORKING PROJECTS Pricing under constraints_in_access_netw...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET NETWORKING PROJECTS Network intrusion detection system using...
IEEE 2014 DOTNET NETWORKING PROJECTS Network intrusion detection system using...IEEE 2014 DOTNET NETWORKING PROJECTS Network intrusion detection system using...
IEEE 2014 DOTNET NETWORKING PROJECTS Network intrusion detection system using...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET NETWORKING PROJECTS Leveraging social networks for p2 p cont...
IEEE 2014 DOTNET NETWORKING PROJECTS Leveraging social networks for p2 p cont...IEEE 2014 DOTNET NETWORKING PROJECTS Leveraging social networks for p2 p cont...
IEEE 2014 DOTNET NETWORKING PROJECTS Leveraging social networks for p2 p cont...IEEEMEMTECHSTUDENTPROJECTS
 
IEEE 2014 DOTNET NETWORKING PROJECTS A proximity aware interest-clustered p2p...
IEEE 2014 DOTNET NETWORKING PROJECTS A proximity aware interest-clustered p2p...IEEE 2014 DOTNET NETWORKING PROJECTS A proximity aware interest-clustered p2p...
IEEE 2014 DOTNET NETWORKING PROJECTS A proximity aware interest-clustered p2p...IEEEMEMTECHSTUDENTPROJECTS
 

More from IEEEMEMTECHSTUDENTPROJECTS (20)

IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Web image re ranking using query-sp...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Web image re ranking using query-sp...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Web image re ranking using query-sp...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Web image re ranking using query-sp...
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Scalable analytics for iaa s cloud ...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Scalable analytics for iaa s cloud ...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Scalable analytics for iaa s cloud ...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Scalable analytics for iaa s cloud ...
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Qos aware geographic opportunistic ...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Qos aware geographic opportunistic ...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Qos aware geographic opportunistic ...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Qos aware geographic opportunistic ...
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Fuzzy keyword search over
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Fuzzy keyword search overIEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Fuzzy keyword search over
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Fuzzy keyword search over
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Dynamic cloud pricing for revenue m...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Dynamic cloud pricing for revenue m...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Dynamic cloud pricing for revenue m...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Dynamic cloud pricing for revenue m...
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Distributed -concurrent--and-indepe...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Distributed -concurrent--and-indepe...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Distributed -concurrent--and-indepe...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Distributed -concurrent--and-indepe...
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Balancing performance--accuracy--an...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Balancing performance--accuracy--an...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Balancing performance--accuracy--an...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Balancing performance--accuracy--an...
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Automatic scaling of internet appli...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Automatic scaling of internet appli...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Automatic scaling of internet appli...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS Automatic scaling of internet appli...
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A scientometric analysis of cloud c...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A scientometric analysis of cloud c...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A scientometric analysis of cloud c...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A scientometric analysis of cloud c...
 
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A mechanism design approach to reso...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A mechanism design approach to reso...IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A mechanism design approach to reso...
IEEE 2014 DOTNET CLOUD COMPUTING PROJECTS A mechanism design approach to reso...
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Smart dc mobility prediction based...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Smart dc mobility prediction based...IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Smart dc mobility prediction based...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Smart dc mobility prediction based...
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Preserving location-privacy-in-geo...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Preserving location-privacy-in-geo...IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Preserving location-privacy-in-geo...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Preserving location-privacy-in-geo...
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Autonomous mobile-mesh-networks
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Autonomous mobile-mesh-networksIEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Autonomous mobile-mesh-networks
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS Autonomous mobile-mesh-networks
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS A qos-oriented-distributed-routing...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS A qos-oriented-distributed-routing...IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS A qos-oriented-distributed-routing...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS A qos-oriented-distributed-routing...
 
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS An active resource orchestration f...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS An active resource orchestration f...IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS An active resource orchestration f...
IEEE 2014 DOTNET MOBILE COMPUTING PROJECTS An active resource orchestration f...
 
IEEE 2014 DOTNET NETWORKING PROJECTS Qos aware geographic opportunistic routi...
IEEE 2014 DOTNET NETWORKING PROJECTS Qos aware geographic opportunistic routi...IEEE 2014 DOTNET NETWORKING PROJECTS Qos aware geographic opportunistic routi...
IEEE 2014 DOTNET NETWORKING PROJECTS Qos aware geographic opportunistic routi...
 
IEEE 2014 DOTNET NETWORKING PROJECTS Pricing under constraints_in_access_netw...
IEEE 2014 DOTNET NETWORKING PROJECTS Pricing under constraints_in_access_netw...IEEE 2014 DOTNET NETWORKING PROJECTS Pricing under constraints_in_access_netw...
IEEE 2014 DOTNET NETWORKING PROJECTS Pricing under constraints_in_access_netw...
 
IEEE 2014 DOTNET NETWORKING PROJECTS Network intrusion detection system using...
IEEE 2014 DOTNET NETWORKING PROJECTS Network intrusion detection system using...IEEE 2014 DOTNET NETWORKING PROJECTS Network intrusion detection system using...
IEEE 2014 DOTNET NETWORKING PROJECTS Network intrusion detection system using...
 
IEEE 2014 DOTNET NETWORKING PROJECTS Leveraging social networks for p2 p cont...
IEEE 2014 DOTNET NETWORKING PROJECTS Leveraging social networks for p2 p cont...IEEE 2014 DOTNET NETWORKING PROJECTS Leveraging social networks for p2 p cont...
IEEE 2014 DOTNET NETWORKING PROJECTS Leveraging social networks for p2 p cont...
 
IEEE 2014 DOTNET NETWORKING PROJECTS A proximity aware interest-clustered p2p...
IEEE 2014 DOTNET NETWORKING PROJECTS A proximity aware interest-clustered p2p...IEEE 2014 DOTNET NETWORKING PROJECTS A proximity aware interest-clustered p2p...
IEEE 2014 DOTNET NETWORKING PROJECTS A proximity aware interest-clustered p2p...
 

Recently uploaded

complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxCrystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxachiever3003
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptNarmatha D
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfRajuKanojiya4
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solidnamansinghjarodiya
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Crushers to screens in aggregate production
Crushers to screens in aggregate productionCrushers to screens in aggregate production
Crushers to screens in aggregate productionChinnuNinan
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxVelmuruganTECE
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 

Recently uploaded (20)

complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxCrystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptx
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.ppt
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdf
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solid
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Crushers to screens in aggregate production
Crushers to screens in aggregate productionCrushers to screens in aggregate production
Crushers to screens in aggregate production
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptx
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 

IEEE 2014 DOTNET NETWORKING PROJECTS Secure data-retrieval-for-decentralized-disruption-tolerant-military-networks

  • 1. GLOBALSOFT TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmai l.com Secure Data Retrieval for Decentralized Disruption-Tolerant Military Networks ABSTRACT: Mobile nodes in military environments such as a battlefield or a hostile region are likely to suffer from intermittent network connectivity and frequent partitions. Disruption-tolerant network (DTN) technologies are becoming successful solutions that allow wireless devices carried by soldiers to communicate with each other and access the confidential information or command reliably by exploiting external storage nodes. Some of the most challenging issues in this scenario are the enforcement of authorization policies and the policies update for secure data retrieval. Ciphertext-policy attribute-based encryption (CP-ABE) is a promising cryptographic solution to the access control issues. However, the problem of applying CP-ABE in decentralized DTNs introduces several security and privacy challenges with regard to the attribute revocation, key escrow, and coordination of attributes issued from different authorities. In this paper, we propose a secure data retrieval scheme using CP-ABE for decentralized DTNs where multiple key authorities manage their attributes independently. We demonstrate how to apply
  • 2. the proposed mechanism to securely and efficiently manage the confidential data distributed in the disruption-tolerant military network. EXISTING SYSTEM: The concept of attribute-based encryption (ABE) is a promising approach that fulfills the requirements for secure data retrieval in DTNs. ABE features a mechanism that enables an access control over encrypted data using access policies and ascribed attributes among private keys and ciphertexts. Especially, ciphertext-policy ABE (CP-ABE) provides a scalable way of encrypting data such that the encryptor defines the attribute set that the decryptor needs to possess in order to decrypt the ciphertext. Thus, different users are allowed to decrypt different pieces of data per the security policy. DISADVANTAGES OF EXISTING SYSTEM:  The problem of applying the ABE to DTNs introduces several security and privacy challenges. Since some users may change their associated attributes at some point (for example, moving their region), or some private keys might be compromised, key revocation (or update) for each attribute is necessary in order to make systems secure.  However, this issue is even more difficult, especially in ABE systems, since each attribute is conceivably shared by multiple users (henceforth, we refer to such a collection of users as an attribute group)
  • 3.  Another challenge is the key escrow problem. In CP-ABE, the key authority generates private keys of users by applying the authority’s master secret keys to users’ associated set of attributes.  The last challenge is the coordination of attributes issued from different authorities. When multiple authorities manage and issue attributes keys to users independently with their own master secrets, it is very hard to define fine-grained access policies over attributes issued from different authorities. PROPOSED SYSTEM: In this paper, we propose an attribute-based secure data retrieval scheme using CP-ABE for decentralized DTNs. The proposed scheme features the following achievements. First, immediate attribute revocation enhances backward/forward secrecy of confidential data by reducing the windows of vulnerability. Second, encryptors can define a fine-grained access policy using any monotone access structure under attributes issued from any chosen set of authorities. Third, the key escrow problem is resolved by an escrow-free key issuing protocol that exploits the characteristic of the decentralized DTN architecture. The key issuing protocol generates and issues user secret keys by performing a secure two-party computation (2PC) protocol among the key authorities with their own master secrets. The 2PC protocol deters the key authorities from obtaining any master secret information of each other such that none of them could generate the whole set of user keys alone. Thus, users are not required to fully trust the authorities in order to protect their data to be shared. The data confidentiality and privacy can be cryptographically enforced against any curious key authorities or data storage nodes in the proposed scheme.
  • 4. ADVANTAGES OF PROPOSED SYSTEM:  Data confidentiality: Unauthorized users who do not have enough credentials satisfying the access policy should be deterred from accessing the plain data in the storage node. In addition, unauthorized access from the storage node or key authorities should be also prevented.  Collusion-resistance: If multiple users collude, they may be able to decrypt a ciphertext by combining their attributes even if each of the users cannot decrypt the ciphertext alone.  Backward and forward Secrecy: In the context of ABE, backward secrecy means that any user who comes to hold an attribute (that satisfies the access policy) should be prevented from accessing the plaintext of the previous data exchanged before he holds the attribute. On the other hand, forward secrecy means that any user who drops an attribute should be prevented from accessing the plaintext of the subsequent data exchanged after he drops the attribute, unless the other valid attributes that he is holding satisfy the access policy. SYSTEM ARCHITECTURE:
  • 5. MODULES: 1. Key Authorities 2. Storage Nodes 3. Sender 4. User MODULES DESCRIPTION: Key Authorities: They are key generation centers that generate public/secret parameters for CP-ABE. The key authorities consist of a central authority and multiple local
  • 6. authorities. We assume that there are secure and reliable communication channels between a central authority and each local authority during the initial key setup and generation phase. Each local authority manages different attributes and issues corresponding attribute keys to users. They grant differential access rights to individual users based on the users’ attributes. The key authorities are assumed to be honest-but-curious. That is, they will honestly execute the assigned tasks in the system; however they would like to learn information of encrypted contents as much as possible. Storage node: This is an entity that stores data from senders and provide corresponding access to users. It may be mobile or static. Similar to the previous schemes, we also assume the storage node to be semi-trusted that is honest-but-curious. Sender: This is an entity who owns confidential messages or data (e.g., a commander) and wishes to store them into the external data storage node for ease of sharing or for reliable delivery to users in the extreme networking environments. A sender is responsible for defining (attribute based) access policy and enforcing it on its own data by encrypting the data under the policy before storing it to the storage node. User: This is a mobile node who wants to access the data stored at the storage node (e.g., a soldier). If a user possesses a set of attributes satisfying the access policy of the encrypted data defined by the sender, and is not revoked in any of the attributes, then he will be able to decrypt the ciphertext and obtain the data.
  • 7. SYSTEM REQUIREMENTS: HARDWARE REQUIREMENTS:  System : Pentium IV 2.4 GHz.  Hard Disk : 40 GB.  Floppy Drive : 1.44 Mb.  Monitor : 15 VGA Colour.  Mouse : Logitech.  Ram : 512 Mb. SOFTWARE REQUIREMENTS:  Operating system : Windows XP/7.  Coding Language : ASP.net, C#.net  Tool : Visual Studio 2010  Database : SQL SERVER 2008 REFERENCE: Junbeom Hur and Kyungtae Kang, Member, IEEE, ACM “Secure Data Retrieval for Decentralized Disruption-Tolerant Military Networks”-IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 1, FEBRUARY 2014.