Le nuove tecnologie di Social Networking e le Imprese - Giuseppe Manco

  • 187 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
187
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
2
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Le  nuove  tecnologie  di  Social   Networking  e  le  imprese   Giuseppe  Manco   ICAR-­‐CNR   manco@icar.cnr.it    
  • 2. Giuseppe  Manco  •  Ricercatore  presso  ICAR-­‐CNR  •  Aree  di  interesse   –  Data  Analysis,  Social  Networks,  sistemi  di  recommendaCon  
  • 3. CONNETTERSI,  COMUNICARE  
  • 4. Sei  gradi  di  separazione  
  • 5. Myspace:  110  milioni  di  uten?  
  • 6. Cos’è  una  rete  sociale?  Traditional Media Broadcast Media: One-to-Many One to Many Communication Media: One-to-One
  • 7. Characteristics na  Socialsociale?   Cos’è  u of rete   MediaEveryone can be a media outlet•  User  generated  content  Disappearing of communications barrier•  Rich Usernriched  content   User  e Interaction User-Generated Contents User  interacCon  •  User Enriched Contents•  User developed widgetsubiqua   Comunicazione   Collaborative environment•  Collective Wisdom environment   CollaboraCve   C Long Tail•  …   Broadcast Media Social MediaFilter, then Publish Publish, then Filter
  • 8. User  generated  content  
  • 9. User  interac?on  
  • 10. Comunicazione   ubiqua  
  • 11. AEvità  condivise  
  • 12. I  websites  più  visitaC  •  Il  traffico  internet  più  alto  (daC  Alexa,  oQobre   2012)   1   Facebook   11   Blogspot   2   Google   12   LinkedIn   3   YouTube   13   Taobao   4   Yahoo   14   Google  India   5     Baidoo   15   Yahoo  Japan   6   wikipedia   16   Sina.com.cn   7   Windows  live   17   msn   8   TwiQer   18   Google  hk   9   QQ.com   19   Google  de   10   Amazon   20   Bing  
  • 13. Il  ruolo  fondamentale  dei  social  media  
  • 14. TIPOLOGIE  DI  RETE  
  • 15. L’Universo  Social  Media   Social   Networking   Content   Social   Blogs   Media   sharing   Wki   Forum  
  • 16. QUALI  OPPORTUNITÀ?  
  • 17. L’azienda  e  i  social  networks  •  Pubbliche  relazioni  •  Customer  Support  •  Market  Research  •  Brand  MarkeCng  •  PromoCons  •  Consumer  EducaCon  •  Sales  •  New  Product  Development  •  Customer  RelaConship   Management  
  • 18. SOCIAL  MEDIA  ANALYTICS  
  • 19. DaC,  daC,  daC  •  Grossi  volumi,  grande  varietà   –  Milioni  di  utenC,  milioni  di  contenuC   –  testuale,  MulCmediale  (immagini,   video,  etc.)     –  Milioni  di  connessioni   –  Tendenze,  preferenze,   comportamenC,  …  •  I  daC  sono  open  e  facili  da  accedere   –  Facili  da  reperire   –  Di  pubblico  dominio   –   Developers  APIs   –   Spidering  the  Web  
  • 20. Le  opportunità   Any user can share and contribute content, tente  può  condividere  e   •  Ogni  u express opinions, link to others contribuire  ai  contenuC,   This means: Can data-mine opinions esprimere  opinioni,  collegarsi  ad   and behaviors of millions of users to altri   gain insights into: •  Questo  significa:   Human behavior –  Human  behavior   Marketing analytics –  MarkeCng  analyCcs     Product sentiment –  Product  senCment  8/21/2011 Jure Leskovec:Social Media Analytics (KDD 11 tutorial) 6
  • 21. Actionable IntelligenceConsumer Generated,Not Edited,Not Authenticated 8/21/2011 Jure Leskovec:Social Media Analytics (KDD 11 tutorial) 7
  • 22. Applicazioni:  ReputaCon  management  •  Consumer  Brand  AnalyCcs   –  Cosa  dice  la  gente  sul  mio  marchio?    •  MarkeCng  CommunicaCons   –  Determinare  se  le  campagne  che   pianifico  saranno  efficaci  •  Product  reviews   –  Estrazione  automaCca  di  review  e   informazioni  su  prodom  e  servizi   •  Facile  da  usare,  confortevole,  prezzo   adeguato,  …    
  • 23. Applicazioni:  Responsività  •  CiCzen  response    •  feedbacks  su  temaCche  poliCche  •  Campagne  poliCche –  Perché  la  gente  supporta  un   candidato?    •  Law  enforcement   –  MovimenC  dissidenC  su  TwiQer     –  Minority  report    hQp://www.nyCmes.com/2011/08/16/us/16police.html?_r=1    
  • 24. Applicazioni:  Viral  MarkeCng  •  Viral  markeCng:     –  Raccomandazioni  personlizzate  •   Il  ruolo  dei  forum  online:   –  79.2%  dei  partecipanC  ai  forum  aiutano   gli  utenC  connessi  a  prendere  decisioni   relaCve  a  un  prodoQo   –  65%  dei  partecipanC  ai  forum   condividono  consigli  (offline  o   personalizzaC)  basaC  sulle  informazioni   che  hanno  leQo  online        hQp://www.socialmediaexaminer.com/new-­‐studies-­‐show-­‐value-­‐of-­‐social-­‐me  
  • 25. Applicazioni:  Human  Behavior  analysis   Process social media content, provide tools • for analysts to:ontenuC,  e  usufruire  di  tools  per     Processare  I  c –  IdenCficare  rnetworks: groups, members Identify social eC  sociali:  gruppi,  membri   –  IdenCficare  tand sentiment Identify topics opics  e  senCments   Predictive Modeling Link Diagrams Social Media Content8/21/2011 Jure Leskovec:Social Media Analytics (KDD 11 tutorial) 12
  • 26. Relevance,  Authority,  SenCment  Page 27 •  Le  tre  dimensioni  dell’interazione  sociale  ilities to pro-ogs.and markets are a very dia because Figure 1: Relevance, authority and sentiment at the blog level. ly inaccessi- IBM’s  topic-­‐based  blog  evaluator     c customer insights and opin- Finding the Relevant Blogsan address several interesting OUR FIRST OBJECTIVE is to filter the vast blogosphere
  • 27. SenCment  DetecCon  •  E’  possibile  caraQerizzare  (in  maniera   automaCca)  il  tono  di  una  discussione?   ORMS3701_FTRs 2/3/10 4:56 PM Page 28 M A R K E T I N G & S O C I A L M E D I A belief of the sentiment IBM  Social  Media  AnalyCcs   associated with it. It is pos- sible to learn from such labeled words in conjunc- tion with labeled docu- ments. Furthermore, the selection of words and doc- uments to be labeled can be made algorithmically. Such an approach is known as active dual super- vision [5], and it can greatly reduce the effort required to label examples in a new domain. Even though there are expressions of sentiment that are domain-specific, Figure 2: Identifying and addressing negative sentiment. there is still a large amount of overlap in how positive and
  • 28. Misurare  Influence  e  Authority  •  Chi  sono  gli  utenC  suscembili?    •  Come  si  propaga  un’informazione?  •  Quando  un’opinione  è  affidabile?  
  • 29. Emerging  Topics  •  Higher-­‐level  concepts  dall’informazione  che  si  distribuisce  •  Come  variano  quesC  concem?   hQp://memetracker.org   Most  menConed  phrases  in  the  US  presidenCal  campaign  
  • 30. I  social  media  e  le  imprese…  •  Due  prospemve   –  Nuovi  scenari  e  modelli  di  interazione   –  AnalyCcs  •  StreQa  cooperazione  con  ricerca  e   innovazione   –  Nuovi  challenges   –  Opportunità  enormi