Your SlideShare is downloading. ×
0
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Izmir rust final final
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Izmir rust final final

247

Published on

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
247
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Lessons from fungal effector proteins: Paving the road to discover cereal rust effectors Rahim Mehrabi Seed and Plant Improvement Institute Iran
  • 2. PAMP PTI Resistance ETS Susceptibility ETI Resistance ETS Susceptibility
  • 3. What we know in rust-wheat pathosystem Rust Genes No. Pst Yr1, Yr2, Yr3, Yr3a, Yr3b, Yr3c, Yr4, Yr4a, Yr4b, Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, Yr11, Yr12, Yr13, Yr14, Yr15, Yr16, Yr17, Yr18, Yr19, Yr20, Yr21, Yr22, Yr23, Yr24, Yr25, Yr26, Yr27, Yr28, Yr32, Yr29, Yr30, Yr31, Yr33, Yr34, Yr35, Yr36, Yr37, Yr38, Yr39, Yr40, Yr41, Yr42, Yr43, Yr44, Yr45, Yr46, Yr47, Yr48, Yr49, Yr50, Yr51, Yr52, Yr53, YrCle, YrD, YrH46, YrHVII, YrMin, YrMor, YrND, YrS, YrTye, YrTr1, YrTr2, YrYam, YrV23, Yrns-B1, YrH52, YrSP, YrDa1, YrDa2, YrDru, YrDru2, YrSte, YrSte2, YrCK, YrAlp, YrSp, YrZH84, YrCN17, YrC591, YrExp1, YrExp2, YrR212, YrS2199, YrC142, YrP81, YrAS2388, YrR61, Yrxy1, Yrxy2, 97 Pgt Sr2, Sr3 & Sr4, Sr5, Sr6, Sr7, Sr7a, Sr7b, Sr8, Sr8a, Sr8b, Sr9, Sr9a, Sr9b, Sr9c, Sr9d, Sr9e, Sr9f, Sr9g, Sr10, Sr11, Sr12, Sr13, Sr14, Sr15, Sr16, Sr17, Sr18, Sr19, Sr20, Sr21, Sr22, Sr23, Sr24, Sr25, Sr26, Sr27, Sr28, Sr29, Sr30, Sr31, Sr32, Sr33, Sr34, Sr35, Sr36, Sr37, Sr38, Sr39, Sr40, Sr41, Sr42, Sr43, Sr44, Sr45, SrA, SrTmp, SrWld, SrZdar, Sr1, SrCad, Sr46, Sr47, Sr48, Sr49, Sr50, Sr51, Sr52, Sr53, Sr54, Sr55, Sr56, Sr57, SrAes7t, SrWeb, Sr1RSAmigo 75 Pt Lr1, Lr2, Lr2a, Lr2b, Lr2c, Lr3a, Lr3b, Lr3c, Lr4, Lr5, Lr6, Lr7, Lr8, Lr9, Lr10, Lr11, Lr12, Lr13, Lr14, Lr14a, Lr14b, Lr14ab, Lr15, Lr16, Lr17, Lr17a, Lr17b, Lr18, Lr19, Lr20, Lr21, Lr22, Lr22a, Lr22b, Lr23, Lr24, Lr25, Lr26, Lr27, Lr28, Lr29, Lr30, Lr31, Lr32, Lr33, Lr34, Lr35, Lr36, Lr37, Lr38, Lr41, Lr42, Lr43, Lr44, Lr45, Lr46, LrTb, LrVPM, Lr52, LrW2, Lr48, Lr49, Lr47, Lr39, Lr50, LrTm, LrTr, Lr51, Lr3, LrTt1, Lr53, Lr54, Lr55, Lr56, LrKr1, LrKr2, LrMq1, Lr57, Lr58, Lr59, Lr60, Lr40, Lr61, Lr62, Lr63, Lr64, Lr65, Lr66, LrZH84, Lr67, LrWo, Lr68, Lr69, Lr70, Lr71, Lr72 95
  • 4. TMLRRSP Lr34/Yr18 LRRNBSCC Lr1 Lr10 Lr21 (Genetics, 2003) Sr33 (Science, 2013) Sr35 STARTKinase Yr36 Defense ? ? ? ? TaRLP1.1 2013 PGTAUSPE-10-1 Upadhyaya 2014
  • 5. 5 Susceptible host Resistant host AvrAvr22 is a cysteine protease inhibitoris a cysteine protease inhibitor Cf-2 RLP Avr2 Rcr3 HR
  • 6. 6 Susceptible host Resistant host Protect pathogen Avr4 is a chitin-bindingAvr4 is a chitin-binding proteinprotein Cf-4 RLP HR
  • 7. Combining three approaches to mine candidate effectors Bioinformatics Expressionprofile  Bioinformatics  Homologs  Possible Host cell translocation motifs  Domain analyses Proteomics Effector candidate  Expression profile  In vitro  In planta over time  Proteomics  Shotgun protein sequencing  apoplatic fluid  in vitro secreted proteins
  • 8. Genome features of cereal rusts  Launched in 2006; draft genome Pst 2011  Richness in repetitive and transposable elements  Expansions of gene families  Oligopeptide and amino acid transporters (important role to play in rust fungi biology)  Large multigene families (small secreted proteins)  Contractions of gene families  Secondary metabolites  Toxins synthesis  Glycosyl hydrolases, lipases and peptidases  High number of predicted genes  Pst=65Mb  (>20,000)  Blumeria graminis 120Mb 5,854  Ustilago maydis 18.7Mb 6,902  69 % of the Pst predicted genes show significant homology to Pgt genes (Large number of lineage-specific genes)
  • 9. Genome mining of effectors Effectorome criteria Small and secreted No TM domain No GPI anchored signature Cysteine rich Pst Pgt Pt 1344 1213 845
  • 10. Genome comparison Race 1 Race 2 Mutated Transposon insertion Deleted
  • 11. Secretome analysis of stripe rust races Cantu et al. 2013
  • 12. 160 14 18 20 22 24 26 36 40 2 6 8 40 2 6 8 10 12 14 20 Avr4E Avr4 Avr2 Avr9 40 2 6 8 10 12 13 Ecp1 80 4 26 30 34 38 42 48 Ecp2-1 40 2 40 42 44 46 48 165 Ecp4 40 2 6 8 10 12 14 Ecp5 175 80 4 36 40 44 48 76 80 Ecp6 1700 168 172 174 176 178 180 213 Ecp7 120 8 32 70 74 78 82 Retro Copia Unknown Gypsy 16 40 2 18 20 22 24 116 118 Ecp2-2 Line 40 2 74 94 128 130 138 Ecp2-3 136 Effector genome structure
  • 13. Agricultural Applications: effector-assisted breeding
  • 14. Overexpression BSMV Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Yr7 Yr8 Yr9 Yr10 Yr11 Yr12 Yr13 Yr14 Yr15 TT3S Protein infiltration Screening Gene postulation Functional markers during breeding
  • 15. Quick screening of wheat germplasm (Effector assay instead of infection assay) pRM152 attL1 attL2ToxA pRM152 attL1 attL2ToxA Pichia pastoris
  • 16. Exploiting effectors provides a tool to accelerate R gene cloning TMLRR TMLRR GST pull-down assay HaloTag-based pull-down assayHaloTag-based pull-down assay Co-Immunoprecipitation assayCo-Immunoprecipitation assay
  • 17. Durable resistance  Select R gene that recognizes effector with high fitness penalty (those that are required for full virulence) TMLRRCC Effector Resistance Effector TMLRRCC X Susceptible Low fitness penalty Some level of resistance Effector TMLRRCC X high fitness penalty Reduced virulence
  • 18. Durable resistance Select R genes that recognize more, or ideally all, allelic forms of Avr genes  provide a broad spectrum of resistance TMLRRCC Effector Resistance WT form Effector Effector Effector Isoform 1 Isoform 2 Isoform 3 TMLRRCC Resistance TMLRRCC Susceptible Effector
  • 19. Durable resistance Select R genes that recognize conserved effectors that presented in more races Races Effector Race1 Race2 Race3 Race4 Race5 Race6 Race7 Race8 Avr1 √ no √ no no no no no Avr2 no no no no √ no no no Avr3 √ √ √ √ √ √ √ no 230 137 234 152 68 120 59 56 97 19 13 17 0 50 100 150 200 250 Total Unique With IPS/GO Conserved M. graminicola M. fijiensis C. fulvum
  • 20. Breeding direction Avoid redundant breeding or cloning efforts R1 R2 Avr1
  • 21. Identification of new R gene Detection of new resistance alleles to allelic diversity of effectors X X X WT A2 A3 Effector alleles A1 AVR3aKI AVR3aEM R3a X X WT A2 A3 Effector alleles A1
  • 22. Circumvent crossing barriers Functional allele-mining with Avr gene in resistant germplasm How many years? TMLRRCC Avr1 TMLRRCC Functional homolog AVRblb1 RB/Rpi-blb1 Rpi-sto1
  • 23. Summary The importance of the effectors in plant susceptibility or resistance The lessens from other fungal pathogens Genome comparison New techniques Structural genomics  Integrated –omics approaches Lots of agricultural applications
  • 24. Acknowledgments Seed and Plant Improvement Institute Cereal Research Department Symposium organizers Dr. Kumarse Nazari

×