Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide


  1. 1. SCIENCE with SPICA ( SP ace I nfrared Telescope for C osmology and A strophysics] M. Tamura (NAOJ) SPICA Science Working Group
  2. 2. <ul><li>- SPICA Science working </li></ul><ul><li>- Science Proposal </li></ul><ul><li>- Possible Key Sciences </li></ul><ul><li>- Several other topics </li></ul><ul><li>- Instrument requirement summary </li></ul>Today’s talk
  3. 3. <ul><li>Enya, Keigo ISAS/JAXA </li></ul><ul><li>Hasegawa, Naoshi ISAS/JAXA </li></ul><ul><li>Kaneda, Hidehiro ISAS/JAXA </li></ul><ul><li>Kataza, Hirokazu ISAS/JAXA </li></ul><ul><li>Kitamura, Yoshimi ISAS/JAXA </li></ul><ul><li>Matsuhara, Hideo ISAS/JAXA </li></ul><ul><li>Matsumoto, Toshio ISAS/JAXA </li></ul><ul><li>Nakagawa, Takao ISAS/JAXA </li></ul><ul><li>Yamamura, Issei ISAS/JAXA </li></ul><ul><li>Hayashi, Masahiko NAOJ/NINS </li></ul><ul><li>Imanishi, Masatoshi NAOJ/NINS </li></ul><ul><li>Izumiura, Hideyuki NAOJ/NINS </li></ul><ul><li>Kodama, Tadayuki NAOJ/NINS </li></ul><ul><li>Kokubo, Ei-ichiro NAOJ/NINS </li></ul><ul><li>Nakajima, Tadashi NAOJ/NINS </li></ul><ul><li>Omukai, Kazuyuki NAOJ/NINS </li></ul><ul><li>Pyo, T. S. NAOJ/NINS </li></ul><ul><li>Sekiguchi, Tomohiko NAOJ/NINS </li></ul><ul><li>Tamura, Motohide NAOJ/NINS </li></ul><ul><li>Watanabe, Jun-ichi NAOJ/NINS </li></ul><ul><li>Yamada, Tohru NAOJ/NINS </li></ul>Current SWG Member Nishi, Ryo-ichi Niigata University Okamoto, Yoshiko Tsukuba University Fukagawa, Misato The University of Tokyo Honda, Mitsuhiko The University of Tokyo Miyata, Takashi The University of Tokyo Onaka, Takashi The University of Tokyo Ueno, Munetaka The University of Tokyo Ida, Shigeru Tokyo Inst. of Technology Susa, Hajime Rikkyo University Hirao, Takanori Nagoya University Otsubo, Takafumi Nagoya University Sugitani, Kohji Nagoya City College Inutsuka, S yuichiro Kyoto University Kamaya, Fumihide Kyoto University Nagata, Tetsuya Kyoto University Aikawa, Yuri Kobe University Kawabata, Kohji Hiroshima University Kawakita, Hideo Gunma Observatory ~40 people from ISAS/NAOJ/Universities as of 2004.10.12 (not complete; sorry)
  4. 4. <ul><li>2.1. Galaxy Formation and Evolution </li></ul><ul><li>2.1.1. Current Status of Extragalactic Researches </li></ul><ul><li>2.1.2. First Object and Reionization </li></ul><ul><li> Cooling by Molecular Hydrogen </li></ul><ul><li> Development of Reionization traced by Hα </li></ul><ul><li>2.1.3. Dusty Forming Galaxies </li></ul><ul><li> Internal Kinematics and Physics </li></ul><ul><li> First Star Formation and Chemistry </li></ul><ul><li>2.1.4. Basic Structure of Galaxies </li></ul><ul><li> Appearance and Development of Morphology </li></ul><ul><li> Mass Assembly and Star Formation History </li></ul><ul><li>2.1.5. Cosmic Large Scale Structure </li></ul><ul><li>2.1.6. Cosmic Background Radiation </li></ul><ul><li>(Nishi, Susa, Kodama, Yamada, Matsuhara, Yoshida, Omukai, etc.) </li></ul><ul><li>2.2. Active Galactic Nuclei </li></ul><ul><li>(Imanishi, Nakagawa, etc.) </li></ul>Cosmic History This topic to be covered by Matsuhara, Imanishi, Yamada.
  5. 5. <ul><li>2.3. Star Formation and Evolution </li></ul><ul><li>2.3.1. Star Formation in Our Galaxy </li></ul><ul><li> Low-mass Star Formation </li></ul><ul><li> Outflows </li></ul><ul><li> High- and Intermediate-mass Star Formation </li></ul><ul><li> Triggered Star Formation </li></ul><ul><li> Star Formation in the Galactic Center </li></ul><ul><li> Cluster Formation </li></ul><ul><li> Interstellar Matter </li></ul><ul><li>2.3.2. Star Formation in Nearby Galaxies and Super Star Clusters </li></ul><ul><li>2.3.3. IMF and Stellar Populations </li></ul><ul><li>2.3.4. Interstellar Chemistry </li></ul><ul><li>(Tamura, Hayashi, Pyo, Okamoto, Sugitani, Nagata, Inutsuka, </li></ul><ul><li>Imanishi, Kamaya, Aikawa) </li></ul>Star Formation and Evolution
  6. 6. <ul><li>2.4. Very Low-Mass Stars and Star Death </li></ul><ul><li>2.4.1. Very Low-Mass Stars </li></ul><ul><li> Brown Dwarfs </li></ul><ul><li> Sub-Brown Dwarfs </li></ul><ul><li>(Nakajima, Tamura) </li></ul><ul><li>2.4.2. Star Death </li></ul><ul><li> Low-Mass Stars </li></ul><ul><li> Mass Outflows </li></ul><ul><li> High-Mass Stars </li></ul><ul><li> Recycles of Dust </li></ul><ul><li>(Izumiura, Yamamura, Onaka, Miyata, Kawabata) </li></ul>Very Low-Mass Stars & Star Death
  7. 7. <ul><li>2.5. Planet Formation and Evolution </li></ul><ul><li>2.5.1. Protoplanetary Disks </li></ul><ul><li>2.5.2. Debris Disks </li></ul><ul><li>2.5.3. Extrasolar Planets </li></ul><ul><li>(Tamura, Ida, Fukagawa, Hirao, Honda, Kokubo) </li></ul>Planet Formation and Evolution
  8. 8. <ul><li>2.6. Solar System </li></ul><ul><li>2.6.1. Comets </li></ul><ul><li>2.6.2. Minor Planets </li></ul><ul><li>2.6.3. Interplanetary Dust </li></ul><ul><li>2.6.4. Small Icy Objects </li></ul><ul><li>2.6.5. Minor Bodies </li></ul><ul><li>(Watanabe, Hasegawa, Kawakita, Furusyo, Sato, Sekiguchi, Kasuga, Otsubo) </li></ul>Solar System
  9. 9. Several Possible Key Sciences Extra-Solar Planets Astro-Mineralogy Astro-Organic-Chemistry
  10. 10. Extrasolar Planets High sensitivity High Spatial Resolution High contrast
  11. 11. Direct Detection <ul><li>Next milestone in extrasolar planet researches. </li></ul><ul><li>The younger, the better (brighter and less contrast). </li></ul><ul><li>Very young giant planets will be detected from ground. </li></ul><ul><li>SPICA has an enough sensitivity for more “general” planets, but resolution/contrast needs to be overcome by technically or target selection. </li></ul>0.1 1 10 100 micron 1M 10M 100M 1G 10Gyr FLUX LUMINOSITY stars brown dwarfs planets Sun J E
  12. 12. <ul><li>SPICA will target direct observations of self-luminous planets at r>a few to ~20 AU of nearby (<10pc) stars. The detectable planets depend on their mass, ages, and separation. If we assume the inner working distance of 3λ/D, then: </li></ul>Extrasolar Planets Wavelength Detectable Planets at 10pc  =5 micron 1 Gyr – 2 M(Jupiter) , r  9AU ~30 G-M target stars  =20 micron 5 Gyr – 2 M(Jupiter), r  36AU ~150 G-M target stars
  13. 13. <ul><li>SPICA Sensitivity in a perfect coronagraph mode. </li></ul><ul><li>Cold BD Gl229B </li></ul><ul><li>1 Jupiter mass object of 10Myr, 100Myr, and 1 Gyr at d=10pc. </li></ul><ul><li>Comparison with Subaru 8.2m NIR and MIR sensitivity. </li></ul>Extrasolar Planets
  14. 14. <ul><li>Young planets and sub-brown dwarfs in nearby star forming regions and cold brown dwarfs are also good targets. </li></ul><ul><li>cf. Voyager/IRIS: a Fourier spectrometer with a wavelength coverage from 4 to 56 micron and a spectral resolution of 40-600 . </li></ul><ul><li>While IRIS played an important role for revealing the atmospheric compositions of the four giant planets of our solar system (Jupiter, Saturn, Uranus, Neptune; Hanel et al. 1979, 1981, 1982, 1986; Conrath et al. 1989 ), the coronagraph spectrometer of SPICA will be an important tool for a study of extrasolar planets. </li></ul>Extrasolar Planets
  15. 15. <ul><li>Young FF planets or sub-brown dwarfs or planemos in nearby star forming regions and cold brown dwarfs are also good targets. </li></ul><ul><li>SPICA is necessary for  1M(Jupiter) FF-planets, if any. </li></ul><ul><li>Astromineralogy including FF-planet disks. </li></ul>Extrasolar Planets: Free-Floaters Natta and Testi 2001 BD flared disk w/ silicate feat. Natta & Testi 2001 Mohanty, RayJay, Tamura et al. 2004 0 5 10 15 μm SPICA R~1000
  16. 16. Astromineralogy & Astroorganic chemistry High Spatial Resolution High Sensitivity
  17. 17. From Disks to Planets: Continuous Studies with SPICA Passive Disk Planetesimal Protoplanetary Disk Planetary Systems and Exozodi Cloud 10 km 0.1μm 10 K 160K(5AU) 1000K(1AU) 160K(3AU) 300K(1AU) Ice Minerals Dust Accretion Disk Core  Envelope Yamamoto
  18. 18. <ul><li>Rapidly developing field, especially with ISO, SST, and probably ASTRO-F. </li></ul><ul><li>8-10m class ground-based telescope progresses, too! </li></ul><ul><li>Ground-based “10 micron window” is not enough to fully exploit this field. </li></ul><ul><li>Too much “unmatching” of spatial resolution between space and ground at present and near future. </li></ul><ul><li>SPICA can mitigate this unmatching. </li></ul><ul><li>Key Word: “Origin of Earth-like Planets” </li></ul><ul><li>Examples in Solar Sys. and YSOs shown later. </li></ul>Astro-mineralogy Silicate features
  19. 19. <ul><li>Dominant forms of astronomical silicates </li></ul><ul><ul><li>olivine (Mg 2X Fe 2-2X SiO 4 ) </li></ul></ul><ul><ul><li>pyroxene (Mg X Fe 1-X SiO 3 ) </li></ul></ul><ul><ul><li>forsterite (Mg 2 SiO 4 ) </li></ul></ul><ul><ul><li>enstatite (MgSiO 3 ) </li></ul></ul><ul><li>Thermal (?) processing: </li></ul><ul><ul><li>ISM: <5% crystalline silicate </li></ul></ul><ul><ul><li>HAEBE disks: crys. Si found; some in evolved disks </li></ul></ul><ul><ul><li>T Tauri disks: crys. Si found in very few sources </li></ul></ul><ul><ul><li>comets and IPDs: 0-30% cry. Si </li></ul></ul><ul><ul><li>Meteorites: 100%, but not primordial </li></ul></ul><ul><ul><li>8-10m class ground-based telescope progresses, too! </li></ul></ul><ul><ul><li>⇒ crystallization occurring during disk phase? </li></ul></ul>Silicate Features Forrest et al. 2004
  20. 20. Silicate Features: ground-based Subaru/COMICS TTS Vega- like star Evolution from Mg-pure silicate to Fe-Mg silicate? Honda et al. 2004
  21. 21. <ul><li>How and when the thermal processing are occurring? </li></ul><ul><li>Connection with comets (low temperature dust)? </li></ul><ul><ul><li>FIR obs. of low temp. component is essential! </li></ul></ul><ul><li>Spatially resolved silicate mineralogy! </li></ul><ul><ul><li>2D spectrometer </li></ul></ul><ul><ul><li>resolution=0.3-12” </li></ul></ul>Silicate Features w/ SPICA Forrest et al. 2004 H 2 O PAH Forsterite
  22. 22. Case Study: beta Pic Hirao report
  23. 23. <ul><li>Dust surface chemistry is extremely important, although 80% of the known interstellar molecules are explained by ion-molecule reactions. </li></ul><ul><li>Also rapidly developing field, especially with ISO, SST (>5μm), and ASTRO-F (incl. 2-5μm). 8-10m class ground-based telescopes, too. </li></ul><ul><li>Ground-based L-band and M-band windows are not enough to develop this field. </li></ul><ul><li>Searches for amino-acid such as glycine (the simplest one). </li></ul><ul><li>Key Word: “Origin of Life” </li></ul>Astro-Organic-Chemistry SST Numerous icy molecules! some probably produced “ hot core” region around protostars for various molecules But not spatially resolved. B5 IRS 1 and HH 46 IRS (Class I protostar) Boogert et al. 2004
  24. 24. Ice Evolution from Protostars to TTS IRAS04016+2610 Tamura et al. HL Tau Tamura et al. GM Aur & AB Aur   (Schneider03; Fukagawa04) ClassⅠ (protostars) ClassⅠ ~Ⅱ ClassⅡ (CTTS) 1000AU=7” original from Ishii extended envelope less extended envelope mostly disk only Herbig Ae/Be all images are 2.2 or 1.7 micron
  25. 25. Other Topics
  26. 26. <ul><li>Mineralogy & Ice </li></ul><ul><li>Recent progresses on YSO disks and cloud (core) </li></ul><ul><li>But very few data on comets </li></ul><ul><li>How crystalline silicates are included in comet nuclei? </li></ul><ul><li>Various ice features and those ice conditions (crystalline or amorphous?) as a function of distance from the sun </li></ul><ul><li>65micron H 2 O only in crystalline ice </li></ul>Solar System : Comet Dust ISO spectra of HD 100546, a Herbig Ae/Be star.
  27. 27. <ul><li>EKBOs, Centaurus, icy satellites, other minor bodies </li></ul><ul><li>Origin of planetesimals </li></ul><ul><li>Derivation of Albedo and Size, combined with ground-based optical observations. </li></ul><ul><li>Good matches w/ new targets from 8-m class telescopes for next several years. </li></ul>Solar System : Icy small objects SED of minor bodies in the solar system.
  28. 28. <ul><li>Direct observations are only for three comet nuclei. </li></ul><ul><li>All icy minor bodies ate very small (<<1”). </li></ul><ul><li>Why the albedo of icy minor bodies are so diverse? (0.02-1.0) </li></ul><ul><li>Only a dozen or so of data so far. </li></ul>Solar System : Icy small objects Albedo diversity of icy minor bodies. 1.0 Enceradus 0.3—0.4 Charon 0.5—0.7 Pluto 0.027 3 Unusual asteroids 0.088 4 Centaurs 0.051 5 TNOs Albedo (average) Object
  29. 29. <ul><li>Will be exploited with SST. </li></ul><ul><li>Spatial resolution is essential for the next step . </li></ul><ul><li>Spatially resolved spectroscopy of circumstellar structure around various YSOs. </li></ul><ul><li>Another challenging but unique idea: H 2 line dynamics with R=10 5 spectroscopy. </li></ul>Warm Molecular Hydrogen S(0) (v=0 - 0 J=2->0; 28.218μm) S(1) (v=0 - 0 J=3->1; 17.035μm) … J= 10 -> 8: 5.05 µm, etc.
  30. 30. <ul><li>Possible sequential star formation (radiation induced) in massive SFRs. </li></ul><ul><li>Several excellent sites for detailed studies. </li></ul><ul><li>High spatial resolution is essential. </li></ul>Triggered Star Formation optical-HST (0.1”) NIR-SIRIUS (1”) MIR-ISO (3”) from Sugitani
  31. 31. <ul><li>MIR 2D spectroscopy (λ/Δλ<1000). </li></ul><ul><li>FIR 2D spectroscopy (λ/Δλ<1000). </li></ul><ul><li>MIR coronagraph imaging and spectroscopy (λ/Δλ<a few 100). </li></ul><ul><li>Some request λ/Δλ=10 5 spectroscopy at MIR. This is challenging but unique (vs. JWST, HSO, ALMA). </li></ul><ul><ul><li>Comets chemistry (Watanabe) </li></ul></ul><ul><ul><li>H 2 line dynamics (Kitamura, Tamura) </li></ul></ul><ul><ul><li>Stellar physics (Yamamura) </li></ul></ul><ul><ul><li>Spatial resolution is not important in this mode. </li></ul></ul>Instrument Requirements Summary