Your SlideShare is downloading. ×
0
The Laser System at PETRA Wire G. A. Blair, Royal Holloway Univ. London ACFA Workshop, Mumbai 16 th  December 2003 Acceler...
Motivation <ul><li>Maximise Luminosity performance of Linear Collider </li></ul><ul><li>Control of transverse beam size an...
Trans.+Long. Profiles Trans: 10-100   m Long: ~200   m Trans:  10-100 nm
LC Layout and Parameters 535 5 335 4.5 196 4.5  x / n m  y / n m IP 20 to 150 1 to 25 7 to 50 1 to 5 3.4 to 15 0.35 to 2...
Optical Scattering Structures <ul><li>Scanning of finely focused laser beam through electron beam </li></ul><ul><li>Detect...
Laserwire for PETRA <ul><li>Positron Electron Tandem Ring Accelerator </li></ul><ul><li>Injector for HERA, upgrade to sync...
Laserwire for PETRA
Signal and Backgrounds <ul><li>Signal: Compton scattering  </li></ul><ul><li>Background sources: </li></ul><ul><ul><li>Syn...
Setup at PETRA
Installation at PETRA
Installation at PETRA
Lab Measurements at RHUL
Installation at PETRA
Detector <ul><li>Requirements for detector material </li></ul><ul><ul><li>short decay time (avoid pile up) </li></ul></ul>...
Detector Calibration <ul><li>Detector studies with DESY II testbeam </li></ul><ul><li>Beamline with electrons with energy ...
First Photons 31.07.03 Laser   on Laser   off Photodiode at IP Q-switch Calorimeter
First Beam Profile Scans <ul><li>Positron beam in PETRA </li></ul><ul><li>Beam energy: 7 GeV </li></ul><ul><li>Bunch patte...
The Laser <ul><li>The laser has been given to us by B. Dehning from CERN. It has been used at LEP to measure beam polariza...
Measurement of the longitudinal Profile <ul><li>The longitudinal profile has been measured with a streak camera: FESCA 200...
Averaged Profile <ul><li>Measured averaged profile:  fits to gaussian with a width of 12.5 ns (as expected)  </li></ul>
Structure in the Longitudinal Profile <ul><li>Example of a single shot measurement of the profile 500 ps window, resolutio...
Unfortunately, the structure is not stable <ul><li>The longitudinal structure is due to longitudinal mode beating – this w...
Laser  Transverse  Profile Units – number of CCD pixels
Laser Summary <ul><li>As expected for a this type of laser, the longitudinal profile shows substructure due to mode beatin...
Orbit Scan <ul><li>First scan with signal on scope </li></ul><ul><li>Then sampling of peak using ADC </li></ul><ul><li>Mov...
Result Orbit Scan <ul><li>Gaussian approximation of beam shape  </li></ul><ul><li>σ m  = (0.175  ± 0.020 stat  ± 0.038 sys...
Fast Scanner Operation <ul><li>Next scan with remote controlled fast scanner </li></ul><ul><li>Orbit position stable </li>...
Data and Analysis <ul><li>Seven scan points recorded </li></ul><ul><li>5 min / point </li></ul><ul><li>40 min for full sca...
New Setting 5.12.03 <ul><li>Positron beam in PETRA </li></ul><ul><li>Beam energy: 7 GeV </li></ul><ul><li>Posittron beam o...
Results 04.12.03 Data <ul><li>Slopy Gaussian approximation of beam shape </li></ul><ul><li>σ m  =(68  ±  3  ±  20)  μ m at...
Conclusions and Outlook <ul><li>Laserwire at PETRA produced first compton photons and measure vertical beam size Next step...
Collaborators <ul><li>DESY </li></ul><ul><li>BESSY (Thanks to T. Kamps for many of these slides) </li></ul><ul><li>UK: RHU...
People  <ul><li>Thanks to PETRA and BKR shift crews ! </li></ul>K Balewski, G Blair, S Boogert, G Boorman, J Bosser, J Car...
Upcoming SlideShare
Loading in...5
×

(Talk)

253

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
253
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "(Talk)"

  1. 1. The Laser System at PETRA Wire G. A. Blair, Royal Holloway Univ. London ACFA Workshop, Mumbai 16 th December 2003 Accelerator-Related Session <ul><li>Motivation for the project </li></ul><ul><li>Laserwire at PETRA </li></ul><ul><ul><li>Environment at PETRA </li></ul></ul><ul><ul><li>Installation of Hardware </li></ul></ul><ul><ul><li>First measurements </li></ul></ul><ul><li>Conclusions and Outlook </li></ul>
  2. 2. Motivation <ul><li>Maximise Luminosity performance of Linear Collider </li></ul><ul><li>Control of transverse beam size and emittance in the Beam Delivery System (BDS) and at the Interaction Point (IP) </li></ul><ul><li>Conventional techniques (wirescanner) at their operational limit </li></ul><ul><li>Development of standard diagnostic tool for LC and LC Test Facility operation based on optical scattering structures  Laserwire, Laser-Interferometer </li></ul><ul><li>Features </li></ul><ul><ul><li>Resolution error smaller than 10% </li></ul></ul><ul><ul><li>Fast (intra-train) scanning </li></ul></ul><ul><ul><li>Non-destructive for electron beam </li></ul></ul><ul><ul><li>Resistant to high power electron beam </li></ul></ul>
  3. 3. Trans.+Long. Profiles Trans: 10-100  m Long: ~200  m Trans: 10-100 nm
  4. 4. LC Layout and Parameters 535 5 335 4.5 196 4.5  x / n m  y / n m IP 20 to 150 1 to 25 7 to 50 1 to 5 3.4 to 15 0.35 to 2.6  x /  m  y /  m BDS TESLA NLC/GLC CLIC
  5. 5. Optical Scattering Structures <ul><li>Scanning of finely focused laser beam through electron beam </li></ul><ul><li>Detection of Compton photons (or degraded electrons) as function of relative laser beam position </li></ul><ul><li>Challenges </li></ul><ul><ul><li>Produce scattering structure smaller than beam size </li></ul></ul><ul><ul><li>Provide fast scanning mechanism </li></ul></ul><ul><ul><li>Achieve efficient signal detection / background suppression </li></ul></ul>
  6. 6. Laserwire for PETRA <ul><li>Positron Electron Tandem Ring Accelerator </li></ul><ul><li>Injector for HERA, upgrade to synchrotron light source </li></ul><ul><li>Long free straight section </li></ul><ul><li>Easy installation of hardware due to existing access pipe and hut outside tunnel area </li></ul><ul><li>Q-switch Nd:YAG with SHG </li></ul><ul><li>From CERN LEP polarimeter </li></ul><ul><li>Trans Mode: large M 2 ~9 </li></ul><ul><li>Long Mode: stability ± 20%, beating  ps substructure </li></ul><ul><li>Homegrown timing unit for external triggering </li></ul>Laser parameter PETRA parameter 4.5 to 12 ~100 1 to 3 500 to 100 ~100 E/GeV  z /ps nC  x /  m  y /  m Energy Bunch Length Charge/bunch Hor. beam size Ver. beam size 1064/532 250/90 10 30 ~7 0.7 l/nm E/mJ dt/ns f rep /Hz  x,y /mm  /mrad Wavelength Energy Pulselength Reprate Beam size Divergence
  7. 7. Laserwire for PETRA
  8. 8. Signal and Backgrounds <ul><li>Signal: Compton scattering </li></ul><ul><li>Background sources: </li></ul><ul><ul><li>Synchrotron radiation </li></ul></ul><ul><ul><li>Cosmic rays </li></ul></ul><ul><ul><li>Bremsstrahlung </li></ul></ul><ul><li>Simulation with Geant4 plus </li></ul><ul><li>tool kits with realistic setup </li></ul>
  9. 9. Setup at PETRA
  10. 10. Installation at PETRA
  11. 11. Installation at PETRA
  12. 12. Lab Measurements at RHUL
  13. 13. Installation at PETRA
  14. 14. Detector <ul><li>Requirements for detector material </li></ul><ul><ul><li>short decay time (avoid pile up) </li></ul></ul><ul><ul><li>short radiation length </li></ul></ul><ul><ul><li>small Moliere radius </li></ul></ul><ul><li>Cuboid detector crystals made of PbWO4 </li></ul><ul><li>3x3 matrix of 18x18x150 mm crystals </li></ul><ul><li>Energy resolution better than 5% </li></ul>
  15. 15. Detector Calibration <ul><li>Detector studies with DESY II testbeam </li></ul><ul><li>Beamline with electrons with energy from 450 MeV to 6 GeV </li></ul><ul><li>Ten detector crystals were calibrated using a single PMT </li></ul><ul><li>Combination of nine crystals in matrix </li></ul><ul><li>Resolution </li></ul><ul><ul><li>High intrinsic resolution </li></ul></ul><ul><ul><li>Full matrix less good </li></ul></ul>
  16. 16. First Photons 31.07.03 Laser on Laser off Photodiode at IP Q-switch Calorimeter
  17. 17. First Beam Profile Scans <ul><li>Positron beam in PETRA </li></ul><ul><li>Beam energy: 7 GeV </li></ul><ul><li>Bunch pattern: 14 x 1 bunch evenly filled </li></ul><ul><li>Average current: 12 mA </li></ul><ul><ul><li>Bunch charge = avg. current / (reprate * Nbunches) = 6.5 nC </li></ul></ul><ul><li>Laser energy measured: 40 mJ (specs 90 mJ), P L = 4 MW </li></ul><ul><li>Optimization: qswitch delay, timing of ADC sample point </li></ul><ul><li>Vertical and horizontal orbit bumps to steer positron beam </li></ul><ul><ul><li>Closed symmetric bumps using four steerers </li></ul></ul><ul><ul><li>Bump length: 50 m, max offset: 10 mm </li></ul></ul><ul><li>Operation of fast piezo scanner </li></ul>
  18. 18. The Laser <ul><li>The laser has been given to us by B. Dehning from CERN. It has been used at LEP to measure beam polarization </li></ul><ul><li>It’s a Nd:YAG Q-switched system, running with 30 Hz </li></ul><ul><li>pulse energy measured: 40 mJ, power: 4 MW </li></ul><ul><li>synchronization to PETRA beam by triggering the Q-switch Pockels-cell </li></ul><ul><li>transverse beam quality is modest (multimode) </li></ul><ul><li>measured spot size at IP: σ L = (80 ± 10) μ m </li></ul>
  19. 19. Measurement of the longitudinal Profile <ul><li>The longitudinal profile has been measured with a streak camera: FESCA 200 from Hamamatsu </li></ul><ul><li>largest window of the camera: 500 ps with a resolution of 5 ps (fwhh) </li></ul><ul><li>The camera was triggered with the laser via a fast photo diode </li></ul><ul><li>Problem: stability of the trigger probably not better than 0.5 ns </li></ul>
  20. 20. Averaged Profile <ul><li>Measured averaged profile: fits to gaussian with a width of 12.5 ns (as expected) </li></ul>
  21. 21. Structure in the Longitudinal Profile <ul><li>Example of a single shot measurement of the profile 500 ps window, resolution 5 ps </li></ul>60 ps 66 ps
  22. 22. Unfortunately, the structure is not stable <ul><li>The longitudinal structure is due to longitudinal mode beating – this was expected </li></ul><ul><li>The beating changes from shot to shot </li></ul>30 ps 79 ps
  23. 23. Laser Transverse Profile Units – number of CCD pixels
  24. 24. Laser Summary <ul><li>As expected for a this type of laser, the longitudinal profile shows substructure due to mode beating </li></ul><ul><li>The spikes have a width of 30 to 60 ps and a distance of 60 to 80 ps </li></ul><ul><li>Unfortunately, the structure is not stable and changes from shot to shot </li></ul><ul><li>To overcome this, the laser has to be equipped with a frequency stabilized seed laser or eventually with an Etalon </li></ul><ul><li>Hot spots a problem </li></ul>
  25. 25. Orbit Scan <ul><li>First scan with signal on scope </li></ul><ul><li>Then sampling of peak using ADC </li></ul><ul><li>Moving beam orbit up and down with vertical orbit bump </li></ul><ul><li>5k counts at each orbit position </li></ul><ul><li>3 min for each spectrum </li></ul><ul><li>40 min for complete scan </li></ul><ul><li>Background with 20k counts </li></ul><ul><ul><li>Mainly synchrotron radiation and bremsstrahlung </li></ul></ul><ul><ul><li>Rate changed by factor 10 </li></ul></ul><ul><li>Signal rate expected at peak </li></ul><ul><ul><li>200 γ s x 380 MeV avg Energy </li></ul></ul>
  26. 26. Result Orbit Scan <ul><li>Gaussian approximation of beam shape </li></ul><ul><li>σ m = (0.175 ± 0.020 stat ± 0.038 sys ) mm </li></ul><ul><li>Vertical beam size </li></ul><ul><li>σ e = sqrt( σ m - σ L ) </li></ul><ul><li> laser σ L = (40 ± 10) μ m </li></ul><ul><li>σ e = (170 ± 23 ± 37) μ m </li></ul><ul><li>Result of fit sensitive to background modelling </li></ul><ul><li>Systematic error dominated by vertical orbit jitter </li></ul><ul><li>More measurements and understaning of bkg sources necessary </li></ul>
  27. 27. Fast Scanner Operation <ul><li>Next scan with remote controlled fast scanner </li></ul><ul><li>Orbit position stable </li></ul><ul><li>Scan range: ± 2.5 mrad </li></ul><ul><ul><li>Scan line = range * f lens = </li></ul></ul><ul><ul><li>0.625 mm (± 20%) </li></ul></ul><ul><li>Change amplitude of scanner power supply (1-100V) </li></ul><ul><li>Take 5k counts </li></ul><ul><li>Record laser IP image with CCD </li></ul><ul><li>Move laser beam </li></ul><ul><li>Take 5k counts ... </li></ul>
  28. 28. Data and Analysis <ul><li>Seven scan points recorded </li></ul><ul><li>5 min / point </li></ul><ul><li>40 min for full scan </li></ul><ul><li>Positron beam position stable within ± 40 μ m </li></ul><ul><li>Moving low energy pedestal </li></ul><ul><li>No background model </li></ul><ul><li>Orbit stable  bkg const. </li></ul><ul><li>Simple pedestal cut instead </li></ul><ul><li>Sufficient background rejection </li></ul>
  29. 29. New Setting 5.12.03 <ul><li>Positron beam in PETRA </li></ul><ul><li>Beam energy: 7 GeV </li></ul><ul><li>Posittron beam optics not as in October scans! </li></ul><ul><li>Bunch pattern: 14 x 1 bunch evenly filled </li></ul><ul><li>Low current: 7.1 mA, first bunch 0.458 mA </li></ul><ul><ul><li>Bunch charge = avg. current / (reprate * Nbunches) = 3.9 nC </li></ul></ul><ul><li>High current: 40.5 mA, first bunch 2.686 mA </li></ul><ul><ul><li>Bunch charge = 22.3 nC </li></ul></ul><ul><li>Vertical and horizontal orbit bumps to steer positron beam into laser beam </li></ul><ul><ul><li>Closed symmetric bumps using four steerers </li></ul></ul><ul><li>Scanning of laser beam using the fast piezo scanner </li></ul>
  30. 30. Results 04.12.03 Data <ul><li>Slopy Gaussian approximation of beam shape </li></ul><ul><li>σ m =(68 ± 3 ± 20) μ m at low current </li></ul><ul><li> σ m =(80 ± 6 ± 20) μ m at high current </li></ul>
  31. 31. Conclusions and Outlook <ul><li>Laserwire at PETRA produced first compton photons and measure vertical beam size Next steps: </li></ul><ul><li>Full characterisation of laser: beam size, divergence, and power (stability) with slot scans and imaging techniques </li></ul><ul><li>Update all readout software, merge BPM and PMT software </li></ul><ul><li>Do more systematic scans with the fast scanner </li></ul><ul><li>Go to smaller spot sizes and reduce error bars </li></ul><ul><li>Build second dimension scanner. </li></ul><ul><li>Start designing a complete laser-wire emittance measurement system for the LC BDS. </li></ul>
  32. 32. Collaborators <ul><li>DESY </li></ul><ul><li>BESSY (Thanks to T. Kamps for many of these slides) </li></ul><ul><li>UK: RHUL, UCL, RAL, (Oxford). </li></ul><ul><li>CERN: (Laser, plus collaboration) </li></ul><ul><li>Close contact with: </li></ul><ul><li>SLAC </li></ul><ul><li>KEK </li></ul>
  33. 33. People <ul><li>Thanks to PETRA and BKR shift crews ! </li></ul>K Balewski, G Blair, S Boogert, G Boorman, J Bosser, J Carter, J Frisch, Y Honda, S Hutchins, T Kamps, T Lefevre, H C Lewin, F Poirier, I N Ross, M Ross, H Sakai, N Sasao, P Schmüser, S Schreiber, J Urukawa, M Wendt, K Wittenburg,
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×