Upcoming SlideShare
×

# Document

820 views
690 views

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
820
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
17
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Document

1. 1. NEW ENERGY RESOURCES: HYDROGEN <ul><li>MANUFACTURING HYDROGEN </li></ul><ul><ul><li>NO NATURAL SOURCES OF ELEMENTAL H 2 EXIST </li></ul></ul><ul><ul><li>THUS, THERE IS NO NATURAL SOURCE OF HYDROGEN ENERGY </li></ul></ul><ul><ul><li>COMPARE CARBON (AS COAL), HYDROCARBONS – ALL HAVE DIRECTLY AVAILABLE ENERGY </li></ul></ul><ul><ul><li>WE HAVE TO USE ENERGY TO PRODUCE HYDROGEN </li></ul></ul><ul><ul><li>CAN MAKE HYDROGEN FROM WATER IN SEVERAL WAYS. NET RESULT IS ALWAYS : </li></ul></ul><ul><ul><li>2H 2 O  2H 2 + O 2 …….. Δ H = +62,050 BTU/LB H 2 </li></ul></ul><ul><ul><li>IF WE GET THE HYDROGEN FROM WATER AND THEN JUST BURN IT, AT BEST WE GET OUR ENERGY BACK! </li></ul></ul>
2. 2. NEW ENERGY RESOURCES: HYDROGEN <ul><li>MANUFACTURING HYDROGEN </li></ul><ul><ul><li>ELECTROLYSIS OF WATER: </li></ul></ul><ul><ul><ul><li>2H 2 O  2H 2 + O 2 Δ H = +62,050 BTU/LB </li></ul></ul></ul><ul><ul><ul><ul><li>1 BTU = 251.6 CALORIES = 1054.2 JOULES </li></ul></ul></ul></ul><ul><ul><ul><ul><li>1 kW = 1.34 HP = 3,415 BTU/HR = 3.600 x 10 6 JOULES </li></ul></ul></ul></ul><ul><ul><li>STEAM REFORMING OF NATURAL GAS (METHANE): </li></ul></ul><ul><ul><ul><li>CH 4 + 2H 2 O  CO 2 + 4H 2 OR: </li></ul></ul></ul><ul><ul><ul><li>CH 4 + H 2 O  CO + 3H 2 (HYDROGEN-RICH SYNGAS) </li></ul></ul></ul><ul><ul><ul><li>THERE ARE OTHER VARIATIONS…. </li></ul></ul></ul><ul><ul><ul><li>THESE ARE ALL EXAMPLES OF WATER-SPLITTING REACTIONS ALTHOUGH, IN THIS CASE THE METHANE CONTRIBUTES A LOT OF THE HYDROGEN. THIS REDUCES THE ENERGY REQUIRED PER LB OF H 2 . </li></ul></ul></ul>
3. 3. NEW ENERGY RESOURCES: HYDROGEN <ul><li>MANUFACTURING HYDROGEN </li></ul><ul><ul><li>WATER-SPLITTING WITH CARBON: </li></ul></ul><ul><ul><ul><li>C + H 2 O  CO + H 2 (THE WATER-GAS REACTION) </li></ul></ul></ul><ul><ul><ul><li>3C + O 2 + H 2 O  3CO + H 2 (CO-RICH SYNGAS REACTION) </li></ul></ul></ul><ul><ul><ul><li>SOME CO 2 PRODUCTION IS ALSO LIKELY </li></ul></ul></ul><ul><ul><ul><li>WIDELY USED COMMERCIALLY TO MAKE SYNGAS </li></ul></ul></ul><ul><ul><li>IN PRINCIPAL, OTHER “SPLITTERS” CAN BE USED: </li></ul></ul><ul><ul><ul><li>V 2 O 3 + H 2 O  V 2 O 4 + H 2 (COULD ALSO USE FeO  Fe 2 O 3 ) </li></ul></ul></ul><ul><ul><ul><li>ALSO METALS LIKE Al OR Mg…. </li></ul></ul></ul><ul><ul><ul><li>BUT THE “SPLITTER” HAS TO BE RECYCLED FOR RE-USE….AND THAT COSTS MONEY! </li></ul></ul></ul><ul><ul><ul><li>ONLY “SPLITTERS” CONTAINING HYDROGEN (= HYDRO-CARBONS) REALLY HELP THE ENERGY BALANCE </li></ul></ul></ul>
4. 4. NEW ENERGY RESOURCES: HYDROGEN <ul><li>MANUFACTURING HYDROGEN </li></ul><ul><ul><li>HYDROGEN IS A BY-PRODUCT OF SOME PROCESSES </li></ul></ul><ul><ul><ul><li>E.G., CHLOR-ALKALI PROCESS FOR CHLORINE AND NaOH </li></ul></ul></ul><ul><ul><ul><li>GOOD ECONOMICS BUT A SMALL % OF THE TOTAL </li></ul></ul></ul><ul><ul><li>THE LARGEST MANUFACTURER IS THE OIL INDUSTRY </li></ul></ul><ul><ul><ul><li>NEARLY ALL BY HYDROCARBON REFORMING </li></ul></ul></ul><ul><ul><ul><li>HYDROCARBONS MAY BE CH 4 , REFINERY GAS (C N H 2N+2 ) </li></ul></ul></ul><ul><ul><ul><li>H 2 IS USED MAINLY IN HYDROCRACKING DISTILLATE  GASOLINE OR IN “THINNING” HEAVY CRUDES </li></ul></ul></ul><ul><ul><ul><li>ADJUSTING THE DEGREE OF SATURATION OF FOOD OILS </li></ul></ul></ul><ul><ul><li>SOME NUMBERS: </li></ul></ul><ul><ul><ul><li>1 KG H 2 ≈ 1.2 US GAL GASOLINE (= 1 UK Gallon) ≈ 136,800 BTU </li></ul></ul></ul><ul><ul><ul><li>1 US GAL GASOLINE = 0.1337 FT 3 , CONTAINS ~122,000 BTU </li></ul></ul></ul><ul><ul><ul><li>1 KG H 2 AS GAS ≈ 427.6 FT 3 ≈ VOLUME OF 3,200 GAL GASOLINE! </li></ul></ul></ul><ul><ul><ul><li>FOR STORAGE, HYDROGEN MUST BE COMPRESSED TO 5000-10.000 PSI OR LIQUEFIED </li></ul></ul></ul>
5. 5. NEW ENERGY RESOURCES: HYDROGEN <ul><li>HYDROGEN EFFICIENCY & COST IN USE </li></ul><ul><ul><li>EFFICIENCY COMPROMISED BY NEED TO MAKE IT! </li></ul></ul><ul><ul><li>MANUFACTURING COST ESTIMATES, \$/KG, 8/2005 (COMPARE WHOLESALE GASOLINE CURRENTLY AT APPROX \$2.50 </li></ul></ul><ul><ul><ul><li>1.2MM KG/DAY, COAL GASIFICATION - \$2.52 - \$5.00 </li></ul></ul></ul><ul><ul><ul><li>1.2MM KG/DAY, NATURAL GAS REFORMING - \$2.86 - \$5.60 </li></ul></ul></ul><ul><ul><ul><li>24,000 KG/DAY, NATURAL GAS REFORMING - \$6.15 - \$12.00 </li></ul></ul></ul><ul><ul><ul><li>24,000 KG/DAY, BIOMASS GASIFICATION - \$7.80 - \$14.00 </li></ul></ul></ul><ul><ul><ul><li>480 KG/DAY, NATURAL GAS REFORMING - \$6.51- \$13.00) </li></ul></ul></ul><ul><ul><ul><li>480 KG/DAY, ELECTROLYSIS (GRID POWER) - \$6.98 - \$14.00) </li></ul></ul></ul><ul><ul><ul><li>480 KG/DAY, WIND TURBINE + ELECTROLYSIS - \$11.25*- \$22.00) </li></ul></ul></ul><ul><ul><ul><li>480 KG/DAY, PHOTOVOLTAIC + ELECTROLYSIS - \$29.94*- \$60.00) </li></ul></ul></ul><ul><ul><li>* - INCLUDE STORAGE COSTS FOR 24 HR OPERATION </li></ul></ul><ul><ul><li>SOURCE: TMG 2005 ANALYSIS FOR NYSERDA BASED ON NRC 2/04 ANALYSIS, UPDATED WITH CURRENT RAW MATERIAL COSTS </li></ul></ul><ul><li>FIRST NUMBER IS “MOST OPTIMISTIC”, THE SECOND IS MORE REALISTIC </li></ul>
6. 6. NEW ENERGY RESOURCES: HYDROGEN <ul><li>HYDROGEN EFFICIENCY & COST IN USE </li></ul><ul><ul><li>CONCLUSION: TO MAKE HYDROGEN COST-COMPETITIVE WITH GASOLINE, BUILD BIG PLANTS W/TRANSPORTATION AND DISTRIBUTION INFRASTRUCTURE AT AN ESTIMATED 2005 COST OF >\$2 BN PER 1.2MM KG HYDROGEN </li></ul></ul><ul><ul><ul><li>TO REPLACE GASOLINE ALONE, WE NEED MORE THAN 300 SUCH FACILITIES – MORE TO REPLACE OTHER HYDROCARBON FUELS. ‘NIMBY’ AND PERMITTING WILL BE A HUGE PROBLEM! </li></ul></ul></ul><ul><ul><ul><li>NO SOUND BUSINESS CASE HAS BEEN DEVELOPED; PRIVATE INDUSTRY WILL NOT INVEST MAJOR CAPITAL - YET </li></ul></ul></ul><ul><ul><ul><li>SMALLER FACILITIES PRODUCE HYDROGEN THAT FAR EXCEEDS THE CURRENT COST OF GASOLINE </li></ul></ul></ul><ul><ul><ul><li>FCVs ARE MUCH LESS EFFICIENT ON THE ROAD THAN CLAIMED – AND HAVE INADEQUATE RANGE* </li></ul></ul></ul><ul><ul><ul><li>CONTINUED USE OF FOSSIL FUELS WITH C CAPTURE IN, E.G., DIESEL OR HYBRID VEHICLES MAY BECOME PREFERABLE </li></ul></ul></ul><ul><li>*See, e.g., Honda FCX test, Car & Driver, July 2005 </li></ul>
7. 7. NEW ENERGY RESOURCES: HYDROGEN <ul><li>SOURCE-TO-USE (AKA “WELL-TO-WHEELS”) ANALYSIS </li></ul><ul><ul><li>COAL  STEAM  ELECTRICITY  TRANSMISSION  AC/DC  HYDROGEN  PURIFICATION  LIQUID H 2  TUBE OR CRYO TRUCK  TANK  FUEL CELL  DC/AC?  MOTORS  WHEELS </li></ul></ul><ul><ul><li>COAL  STEAM  ELECTRICITY: 35% EFFICIENCY </li></ul></ul><ul><ul><li>ELECTRICITY  H 2 (ELECTROLYSIS): 65% EFFICIENCY </li></ul></ul><ul><ul><li>H 2 LIQUEFACTION: 85% EFFICIENCY (NEGATIVE J-T) </li></ul></ul><ul><ul><li>TRANSPORTATION: 90% EFFICIENCY (DETERMINED BY DISTANCE) </li></ul></ul><ul><ul><li>HANDLING: 95% EFFICIENCY </li></ul></ul><ul><ul><li>FUEL CELL TO WHEELS (CURRENT): 40-45% EFFICIENCY (FUEL CELL ALONE WITH NO ACCESSORIES IS ABOUT 65% EFFICIENT) </li></ul></ul><ul><ul><li>OVERALL EFFICIENCY, SOURCE (COAL) TO FCV WHEELS: </li></ul></ul><ul><ul><li>100 x [.35 x .65 x .85 x .90 x .95 x .40] = 6.6% </li></ul></ul><ul><ul><li>NOT VERY IMPRESSIVE! </li></ul></ul><ul><ul><li>CONCLUSION : HYDROGEN IS AN “ENERGY HOG”. </li></ul></ul>
8. 8. SOURCE-TO-USE EFFICIENCIES: CALIBRATION DATA <11 38 <28 Hydrogen fuel cell; hydrogen from electrolysis, power at retail 16 38 41 Hydrogen fuel cell; liquid hydrogen from natural gas, central station 17 21 81 Conventional gasoline engine w/latest engine technology 20 23 81 Gasoline/electric hybrid w/latest engine technology 22 38 60 Hydrogen fuel cell; distributed hydrogen from natural gas at retail (\$7.50) 22 35 81 Hi-efficiency (European) turbodiesel w/latest fuel injection technology 22 27 81 Hydrogen fuel cell; on-board gasoline/hydrogen reformer (no longer considered feasible) 28 35 81 Diesel/Electric Hybrid OVERALL (source-to-use) % FUEL USE (tank-to-use) % FUEL PRODUCTION (source-to-tank) % FUEL/POWER PLANT/VEHICLE COMBINATION NOTE: OLDER DATA FOR COMPARISON
9. 9. <ul><li>WHAT ARE THE CHOICES? </li></ul><ul><ul><li>HYDROGEN </li></ul></ul><ul><ul><ul><li>AN “ENERGY HOG” IN MANUFACTURE BECAUSE IT MUST BE MADE FROM ANOTHER ENERGY RESOURCE! PRODUCT MUST ALSO BE VERY PURE </li></ul></ul></ul><ul><ul><ul><li>VERY HIGH PROJECTED MANUFACTURED COST </li></ul></ul></ul><ul><ul><ul><li>VERY POOR SOURCE-TO-USE EFFICIENCIES </li></ul></ul></ul><ul><ul><li>HUGE TECHNICAL BARRIERS TO ITS USE – FOR EXAMPLE </li></ul></ul><ul><ul><ul><li>HIGH COST OF TRANSPORTATION AND STORAGE </li></ul></ul></ul><ul><ul><ul><li>HIGH FUEL CELL COSTS AND LOW “TANK-TO-WHEEL” EFFICIENCIES IN REAL WORLD USE </li></ul></ul></ul><ul><ul><ul><li>LOW COMBUSTION ENTHALPY PER UNIT VOLUME </li></ul></ul></ul><ul><ul><ul><li>LOW EFFICIENCY IN MOST IC ENGINES </li></ul></ul></ul><ul><ul><ul><li>MASSIVE “DISINFORMATION” PR CAMPAIGN </li></ul></ul></ul>ALTERNATIVE ENERGIES (GENERAL)
10. 10. ALTERNATIVE ENERGIES (GENERAL) <ul><ul><li>MOST OTHER ALTERNATE FUELS ARE ALSO “THERMOCHEMICALLY CHALLENGED”. </li></ul></ul><ul><ul><li>OUR SCORES (BASED ON ALL FACTORS): </li></ul></ul><ul><ul><ul><li>HYDROGEN (D+) </li></ul></ul></ul><ul><ul><ul><li>CORN ETHANOL (C-) </li></ul></ul></ul><ul><ul><ul><li>CELLULOSIC ETHANOL (B) </li></ul></ul></ul><ul><ul><ul><li>METHANOL (B-) </li></ul></ul></ul><ul><ul><ul><li>BIODIESEL (FROM VEGETABLE OILS OR ANIMAL FATS) (B) </li></ul></ul></ul><ul><ul><ul><li>“ GREEN DIESEL” (BY HYDROGENATING VEGETABLE OILS AND ANIMAL FATS) B+ </li></ul></ul></ul><ul><ul><ul><li>BIOMASS-BASED FUELS (INCLUDING “BTL” FUELS) (B) –DATA LESS CERTAIN AND COST HIGH </li></ul></ul></ul><ul><ul><li>DETAILS FOLLOW….. </li></ul></ul>
11. 11. ENERGY USES THAT ALSO SAVE PETROLEUM <ul><li>WE ALSO HAVE….. </li></ul><ul><li>“ CLEAN” DIESEL ENGINES! </li></ul><ul><ul><li>NEW TURBODIESEL DEVELOPMENTS </li></ul></ul><ul><li>HCCI AND SIMILAR NEW-TECH ENGINES </li></ul><ul><ul><li>DEVELOPMENT PROVING DIFFICULT </li></ul></ul><ul><li>HYBRIDS (HEVs AND PHEVs) </li></ul><ul><ul><li>LOTS OF PROGRESS, STILL HIGH COST </li></ul></ul><ul><li>EVs (REINCARNATED) </li></ul><ul><li>FUEL CELLS (BUT SHOW ME THE FUEL?) </li></ul><ul><li>STIRLING ENGINES (b. 1816) </li></ul><ul><li>EVEN STEAM….AND OTHER WORKING FLUIDS </li></ul><ul><li>BIG CHANGES LIKELY TO COME FROM EMISSIONS & ENERGY LEGISLATION BOTH HERE AND IN EUROPE </li></ul>
12. 12. NEW DIESEL FUEL DEVELOPMENTS <ul><li>WHAT ARE THE NEW FUELS? (1) </li></ul><ul><ul><li>ULTRA-LOW SULFUR DIESEL FUEL (<15 PPMW) – MANDATORY (AND NOT NEW ANY MORE) </li></ul></ul><ul><ul><ul><li>OLD STANDARD WAS <500 PPM! ACTUAL S WAS USUALLY 150-350 PPM. </li></ul></ul></ul><ul><ul><ul><li>LOW AROMATICS ALSO DESIRABLE FOR SMOKE CONTROL </li></ul></ul></ul><ul><ul><li>ULSD IS REFINED FROM ALMOST ANY CRUDE OIL </li></ul></ul><ul><ul><ul><li>HI-S REQUIRES AGGRESSIVE DESULFURIZATION </li></ul></ul></ul><ul><ul><ul><li>WHICH USES EVEN MORE HYDROGEN </li></ul></ul></ul><ul><ul><ul><li>ADDS COST </li></ul></ul></ul><ul><ul><ul><li>RESULTS IN CHAIN FRAGMENTATION </li></ul></ul></ul><ul><ul><ul><li>AND LOWERS THERMODYNAMIC EFFICIENCY OF CONVERSION </li></ul></ul></ul>
13. 13. NEW DIESEL FUEL DEVELOPMENTS <ul><ul><li>WHAT ARE THE NEW FUELS? (2) </li></ul></ul><ul><ul><li>ULS DIESEL FUELS CAN ALSO BE MADE FROM: </li></ul></ul><ul><ul><ul><li>NATURAL GAS VIA REFORMING OR PARTIAL OXIDATION AND FISCHER-TROPSCH CATALYSIS TO DISTILLATE (  GTL FUELS) </li></ul></ul></ul><ul><ul><ul><li>COAL OR BIOMASS VIA GASIFICATION AND FISCHER-TROPSCH CATALYSIS (  CTL OR BTL FUELS) </li></ul></ul></ul><ul><ul><ul><li>GTL CAN USE STRANDED OR ORPHANED GAS , THUS EASING DEMAND ON CONVENTIONAL NATURAL GAS </li></ul></ul></ul><ul><ul><ul><li>ONLY BTL USES A RENEWABLE, SUSTAINABLE SOURCE </li></ul></ul></ul><ul><ul><ul><li>MANUFACTURE OF ULSD DIESEL - PROBABLY ~80% EFFICIENT </li></ul></ul></ul><ul><ul><ul><li>MANUFACTURE OF GTL DIESEL ~60-65% EFFICIENT </li></ul></ul></ul><ul><ul><ul><li>MANUFACTURE OF CTL DIESEL ~55-65% EFFICIENT </li></ul></ul></ul><ul><ul><ul><li>MANUFACTURE OF BTL DIESEL - NOT DOCUMENTED OR ESTABLISHED YET </li></ul></ul></ul>
14. 14. FUEL DEVELOPMENTS <ul><li>WHAT ARE THE NEW FUELS? (3) </li></ul><ul><ul><li>ULSD: </li></ul></ul><ul><ul><ul><li>LOW SULFUR  FEWER PARTICULATES, LESS PARTICLE AGGLOMERATION, LESS ACID, LESS VISIBLE SMOKE </li></ul></ul></ul><ul><ul><ul><li>LOW AROMATICS  FEWER PARTICULATES, LOWER PAHs </li></ul></ul></ul><ul><ul><ul><li>CAN REDUCE SULFUR, AROMATICS BY HYDROGENATION </li></ul></ul></ul><ul><ul><li>GTL, CTL AND BTL: </li></ul></ul><ul><ul><ul><li>“ SUPER-ULTRA” LOW SULFUR – ESSENTIALLY ZERO </li></ul></ul></ul><ul><ul><ul><li>SIMILAR TO EUROPEAN ULSD </li></ul></ul></ul><ul><ul><ul><li>VERY LOW AROMATICS </li></ul></ul></ul><ul><ul><ul><li>OTHERWISE INDISTINGUISHABLE FROM REGULAR DIESEL </li></ul></ul></ul><ul><ul><ul><li>IF DEMAND HIGH, WILL HAVE TO BE IMPORTED – THE US DOES NOT HAVE ENOUGH NATURAL GAS </li></ul></ul></ul><ul><ul><li>IS BIODIESEL ANY BETTER THAN ULSD, GTL, BTL? </li></ul></ul><ul><ul><ul><li>VERY SIMILAR RESULTS, SOME ALDEHYDE EMISSIONS </li></ul></ul></ul>
15. 15. FUEL DEVELOPMENTS EMISSIONS RESULTS vs. Standard D-2 diesel vs. California ULSD RESULTS DEFY SIMPLE EXPLANATION!
16. 16. BIOFUELS DEFINITIONS <ul><li>WHAT ARE BIOFUELS? (1) </li></ul><ul><ul><li>LIQUID FUELS (USUALLY) DERIVED FROM BIOLOGICAL SOURCES: </li></ul></ul><ul><ul><ul><li>ETHANOL (FROM CORN STARCH BY HYDROLYSIS AND FERMENTATION) </li></ul></ul></ul><ul><ul><ul><li>ETHANOL (FROM NON-CORN NATURAL STARCH SOURCES) </li></ul></ul></ul><ul><ul><ul><ul><li>POTATO, RICE, WHEAT, BARLEY, CASSAVA…. </li></ul></ul></ul></ul><ul><ul><ul><li>ETHANOL (FROM NATURAL SUGARS) </li></ul></ul></ul><ul><ul><ul><ul><li>SUGAR CANE, SUGAR BEET…. </li></ul></ul></ul></ul><ul><ul><ul><li>BIODIESEL (BY METHYLATING NATURAL OILS) </li></ul></ul></ul><ul><ul><ul><ul><li>NATURAL OIL SEEDS - CANOLA, PEANUT OR SOYBEAN </li></ul></ul></ul></ul><ul><ul><ul><ul><li>MANY OTHERS </li></ul></ul></ul></ul>
17. 17. DEFINITIONS <ul><li>WHAT ARE BIOFUELS? (2) </li></ul><ul><ul><ul><li>BIOMASS  LIQUID FUELS </li></ul></ul></ul><ul><ul><ul><ul><li>WOOD WASTE, CROP RESIDUES (E.G. CORN STOVER), PURPOSE-GROWN CROPS </li></ul></ul></ul></ul><ul><ul><ul><ul><li>USED FOR MAKING HYDROCARBONS, FUEL ALCOHOLS, ETHERS, OTHER OXY-FUELS </li></ul></ul></ul></ul><ul><ul><ul><li>BIOMASS  FUEL GASES </li></ul></ul></ul><ul><ul><ul><ul><li>METHANE (LANDFILLS, DIGESTERS) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>SYNTHETIC NATURAL GAS (METHANE PLUS) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>SYNGAS (H 2 +CO)  OTHER PRODUCTS </li></ul></ul></ul></ul>
18. 18. FUEL DEVELOPMENTS <ul><li>WHAT ARE BIOFUELS? (3) </li></ul><ul><ul><li>BIODIESEL </li></ul></ul><ul><ul><li>MADE FROM A WIDE VARIETY OF VEGETABLE OILS, E.G.: </li></ul></ul><ul><ul><ul><li>SOYBEAN OIL (IN THE US) </li></ul></ul></ul><ul><ul><ul><li>RAPESEED (CANOLA) OIL (IN EUROPE, CANADA) </li></ul></ul></ul><ul><ul><ul><li>SUNFLOWER OIL – LIKE RAPESEED, GOOD PRODUCTIVITY/ACRE </li></ul></ul></ul><ul><ul><ul><li>PEANUT OIL (FIRST USED BY “DR. DIESEL” – RUDOLPH DIESEL) </li></ul></ul></ul><ul><ul><ul><li>CORN OIL </li></ul></ul></ul><ul><ul><ul><li>ANIMAL FATS (TALLOW) </li></ul></ul></ul><ul><ul><ul><li>ALSO “YELLOW GREASE” AND “WHITE GREASE” </li></ul></ul></ul>
19. 19. FUEL DEVELOPMENTS <ul><li>WHAT ARE BIOFUELS? (4) </li></ul><ul><ul><li>BIODIESEL </li></ul></ul><ul><ul><li>ALSO MADE FROM: </li></ul></ul><ul><ul><ul><li>RECYCLED COOKING OILS (“YELLOW GREASE”) IN US, CANADA. ALSO PORK FAT (“WHITE GREASE”) </li></ul></ul></ul><ul><ul><ul><li>OVERSEAS: JATROPHA, OTHER HIGH OIL CONTENT NUT OILS (INDIA) – VERY PRODUCTIVE OIL CROPS FOR POOR SOIL CONDITIONS </li></ul></ul></ul><ul><ul><li>ALL ARE MIXTURES OF FATTY ACID TRIGLYCERIDES </li></ul></ul><ul><ul><li>WHILE IT IS POSSIBLE TO USE THESE DIRECTLY AS A FUEL, THIS IS NOT GOOD FOR DIESEL ENGINE BEARING WEAR </li></ul></ul><ul><ul><li>THE RAW OR RECYCLED OILS MUST BE REFINED AND ALKYLATED </li></ul></ul><ul><ul><ul><li>IN PRACTICE, IT IS REACTED WITH METHYL OR ETHYL ALCOHOL AND A SIMPLE BASE CATALYST TO FORM THE FATTY ACID ALKYL ESTER AND BY-PRODUCT GLYCEROL [WHICH ITSELF HAS SOME VALUE AS A FUEL] </li></ul></ul></ul>
20. 20. ENERGIZING OUR FUTURE <ul><li>BIODIESEL </li></ul><ul><li>TRIGLYCERIDE AND FATTY ACID STRUCTURE </li></ul>
21. 21. “ SYNTHETIC BIODIESEL” <ul><li>TRIGLYCERIDE AND FATTY ACID STRUCTURE </li></ul>
22. 22. BIODIESEL: PRODUCTION PROCESS
23. 23. BIODIESEL PRODUCTION FROM RAPESEED OIL
24. 24. A Comparison of Biodiesel Base Oils by Source and Type <ul><li>BIODIESEL FUEL CHARACTERISTICS </li></ul><ul><ul><li>B-100 IS TYPICALLY A MIXTURE OF 5-7 (  ) FATTY ACID ESTERS </li></ul></ul><ul><ul><li>PROPORTIONS VARY WIDELY, EVEN AMONG SOY ESTERS FROM DIFFERENT SOURCES, LOCATIONS, CLIMATES </li></ul></ul><ul><ul><li>DIFFERENT VEGETABLE OILS PRODUCE VERY DIFFERENT ESTER DISTRIBUTIONS – AND HENCE DIFFERENT FUEL PROPERTIES </li></ul></ul><ul><ul><ul><li>NOT SURPRISING SINCE FA AND FAE PROPERTIES ALSO VARY! </li></ul></ul></ul><ul><ul><ul><li>IN PRACTICE, IMPACT IS MITIGATED BY BLENDING WITH PETRO DIESEL </li></ul></ul></ul><ul><ul><li>VARIABILITY CAN BE REDUCED BY CAREFUL PLANT BREEDING AND/OR GE (DUPONT, MONSANTO) </li></ul></ul><ul><ul><li>FUEL PROPERTIES AND PERFORMANCE [ESPECIALLY EXHAUST EMISSIONS] WILL BE CONTROLLED ONLY WHEN WE CAN CONTROL FUEL COMPOSITION - E.G.: </li></ul></ul><ul><ul><ul><li>BIODIESEL: FAE COMPOSITION, DISTRIBUTION, ARE MOST IMPORTANT </li></ul></ul></ul><ul><ul><ul><li>PETROLEUM DIESEL: SULFUR, AROMATICS CONTENT ARE MOST IMPORTANT </li></ul></ul></ul><ul><ul><ul><li>FAE DISTRIBUTION MAY HAVE GREATEST EFFECT ON UNREGULATED EMISSIONS </li></ul></ul></ul>
25. 25. A Comparison of Biodiesel Base Oils by Source and Type 0.5 1.5 0.9 0.2 n/a Other n/a n/a 0.2 0.1 n/a Lignoceric n/a n/a 0.4 0.4 n/a Behenic C22 n/a n/a 1.4 0.2 n/a Gadoleic C20 n/a n/a 0.7 0.35 n/a Arachidic C20 n/a n/a n/a 0.1 n/a Margaric C20 n/a n/a 9.9 8.3 5.5 Linolenic C18:3 29.5 12.4 19.1 51.5 48.3 Linoleic C18:2 50.0 41.1 61.5 24.3 33.8 Oleic C18:1 5.5 5.4 2.0 4.2 3.1 Stearic C18:0 14.5 39.6 3.9 10.1 9.3 Palmitic C16:0 Typical Jatropha Oil Typical Palm Oil Canada #1 Canola Oil US Midwest Soybean Oil NE Brazil Soybean Oil Fatty Acid
26. 26. SIMPLIFIED FATTY ACID COMPOSITIONS OF KEY VEGETABLE OILS 71 17 12 0 0 0 0 0 JOJOBA 60.5 3.5 2 24 10 0 0 0 ALGAL OIL 0 2 82 16 0 0 0 0 JATROPHA 0 0 97 3 0 0 0 0 MUSTARD 0 0 97 3 0 0 0 0 RAPESEED 0 0 88 10 0 0 0 0 SOYBEAN 0 0 94 6 0 0 0 0 SUNFLOWER 0 0 89 10 1 0 0 0 CORN 0 0 68 29 3 0 0 0 TALLOW 0 0 58 40 4 0 0 0 PALM 0 0 18 8 17 49 5 3 PALM KNL 0 0 11 9 17 49 7 7 COCONUT C22 C20 C18 C16 C14 C12 C10 C8 OIL
27. 27. COMMON NATURAL OIL FATTY ACIDS (NOT ESTERS) <ul><li>Caprylic (C8) CH3(CH2)6COOH (COCONUT) </li></ul><ul><li>Capric (C10) CH3(CH2)8COOH (COCONUT) </li></ul><ul><li>Lauric (C12) CH3(CH2)10COOH (COCONUT, PALM KERNEL) </li></ul><ul><li>Myristic (C14) CH3(CH2)12COOH (BUTTER, PALM KERNEL, COCONUT) </li></ul><ul><li>Palmitic (C16) CH3(CH2)14COOH (TALLOW, LARD, BUTTER, PALM) </li></ul><ul><li>Palmitoleic (C16) CH3(CH2)5CH=CH(CH2)7COOH (COD LIVER OIL) </li></ul><ul><li>Stearic (C18) CH3(CH2)16COOH ( TALLOW) </li></ul><ul><li>Oleic (C18) CH3(CH2)7CH=CH(CH2)7COOH (ALMOST ALL) </li></ul><ul><li>Linoleic (C18) CH3(CH2)4CH=CH(CH2)CH=CH(CH2)7COOH (MOST) </li></ul><ul><li>Linolenic (C18 ) CH3(CH2)CH=CH(CH2)CH=CH(CH2)CH=CH(CH2)7COOH (LINSEED, TUNG OILS) </li></ul><ul><li>Arachidic (C20) CH2(CH2)18COOH (PEANUT, BUTTER) </li></ul><ul><li>Eicosenoic (C20) CH3(CH2)7CH=CH(CH2)9COOH (RAPE, MUSTARD) </li></ul><ul><li>Erucic (C22) CH3(CH2)7CH=CH(CH2)11COOH (TOXIC! SOME IN “OLD” CANOLA) </li></ul>
28. 28. Properties of Individual Methyl Esters Found in Biodiesel Teoh & Clements Bagby & Freedman Bagby & Freedman Janarthanan et al Janarthanan et al Source of Data -35.0 39.7 33 3.68 0.890 Linoleate -19.8 39.9 55 4.47 0.878 Oleate 39.1 40.1 75 5.79 0.867 Stearate 30.6 39.4 74 4.37 0.867 Palmitate Melting Point O C Heating Value MJ/kg Cetane No. Viscosity: Cs @ 40 O C Density, g/cc @15 O C Fatty Acid Methyl Ester
29. 29. A Comparison of Biodiesel Alkyl Esters by Source and Type (1) -25 to +5 -25 to -15 43.4 44.9 60-72 2.6 40-52 D-2 (Typical) 8.0 9.0 37.2 40.5 124 5.78 61.0 Frying Oil EE 9.0 13.9 n/a 40.2 117 4.8 58.8 Tallow ME -7.0 -3.0 n/a 40.7 n/a 5.24 51.7 Soy BE -15.0 -2.0 n/a 40.5 185 6.17 64.9 Can EE -4.0 -1.0 to 1.0 n/a 40.0 160 4.41 48.2 Soy EE -10.8 -4.0 37.3 40.7 170 4.83 52.9 Can ME -1 to -3.8 -0.5 tp 2.0 37.0 40.4 131 4.08 50.9 Soy ME Pour Pt. O C Cloud Pt. O C LHV MJ/Kg HHV MJ/Kg Flash Pt. O C Viscos CS Cetane No. Ester ▼
30. 30. A Comparison of Biodiesel Base Oils by Source and Type (2) <ul><li>Notes for Previous Slide </li></ul><ul><ul><li>ME = methyl ester; EE = ethyl ester; BE = butyl ester; C = canola </li></ul></ul><ul><ul><li>Methylation is by far the most common esterification method </li></ul></ul><ul><ul><li>D-2 = conventional petroleum diesel (varies widely in properties) </li></ul></ul><ul><ul><li>HHV = higher heating value; LHV = lower heating value (excludes unrecovered evaporation enthalpy in water vapor); </li></ul></ul><ul><ul><li>1 MJ/Kg = 429.92 BTU/lb. </li></ul></ul><ul><li>Comments on Previous Slide </li></ul><ul><ul><li>HHV values are remarkably consistent– about 10% (HHV) or 15% (LHV) below that of typical D-2 (biodiesel produces more combustion water) </li></ul></ul><ul><ul><li>Cold weather performance varies widely; it is unacceptable in some esters (e.g., tallow methyl ester, esterified frying oil) compared to D-2. Additives are usually required for lower cloud, pour points and CFPP </li></ul></ul><ul><ul><li>Alkyl ester cetane numbers are usually significantly higher than for D-2, especially for canola esters. </li></ul></ul>
31. 31. A Comparison of Biodiesel Base Oils by Source and Type (3) <ul><li>There are many other important natural oilseed crops </li></ul><ul><li>Oil FA constitution varies very widely </li></ul><ul><li>Some extreme examples not listed in table: </li></ul><ul><ul><li>Castor Oil - 90% ricinoleic acid – used as a engine lubricant </li></ul></ul><ul><ul><li>Tung Oil - 82% eleostearic acid – used in furniture care products; also as a diesel fuel in rural China! </li></ul></ul><ul><ul><li>Ucuuba Oil (Brazil) - 73% myristic acid – used to make candles </li></ul></ul><ul><ul><li>Neem Oil – 42% oleic acid, 21% stearic acid, 19% palmitic acid. Unusual in that it contains organic sulfur compounds that make it effective as an insect repellent </li></ul></ul><ul><ul><li>Tallow (animal fat) - 43% oleic acid, 24% palmitic acid, 19% stearic acid – used for candles and for biodiesel manufacture </li></ul></ul><ul><li>All are potential base oils for biodiesel manufacture </li></ul><ul><ul><li>Some (e.g., tallow, peanut, olive, sunflower) have been methylated and used with limited success </li></ul></ul>
32. 32. SIMPLIFIED FATTY ACID COMPOSITIONS OF KEY VEGETABLE OILS (REPEATED) 71 17 12 0 0 0 0 0 JOJOBA 60.5 3.5 2 24 10 0 0 0 ALGAL OIL 0 2 82 16 0 0 0 0 JATROPHA 0 0 97 3 0 0 0 0 MUSTARD 0 0 97 3 0 0 0 0 RAPESEED 0 0 88 10 0 0 0 0 SOYBEAN 0 0 94 6 0 0 0 0 SUNFLOWER 0 0 89 10 1 0 0 0 CORN 0 0 68 29 3 0 0 0 TALLOW 0 0 58 40 4 0 0 0 PALM 0 0 18 8 17 49 5 3 PALM KNL 0 0 11 9 17 49 7 7 COCONUT C22 C20 C18 C16 C14 C12 C10 C8 OIL
33. 33. COMPOSITION AND PROPERTIES <ul><li>HOW TO OPTIMISE COMPOSITION? </li></ul><ul><ul><li>OBTAIN MUCH MORE DATA ON FUNCTIONAL PROPERTIES VS. COMPOSITION </li></ul></ul><ul><ul><li>BLEND FROM MULTIPLE SOURCES TO ACHIEVE SELECTED COMPOSITION </li></ul></ul><ul><ul><ul><li>E.G., COCONUT OIL + RAPESEED OIL </li></ul></ul></ul><ul><ul><ul><li>TALLOW + ?? </li></ul></ul></ul><ul><ul><li>NEED TO BALANCE SATURATES VS UNSATURATES – NOT JUST CHAIN LENGTH </li></ul></ul><ul><ul><li>WITH ENOUGH COMPOSITIONAL INFO, NO DIFFERENT THAN BLENDING GASOLINE OR LUBRICANTS </li></ul></ul><ul><ul><li>NEED TO TAKE THE “BASE STOCK” (ULSD) INTO ACCOUNT IN TARGETING THE FINAL RESULT </li></ul></ul>
34. 34. BIODIESEL <ul><li>HOW IS IT MADE? </li></ul><ul><ul><li>BY REACTING VEGETABLE OIL WITH ALCOHOLS LIKE ETHANOL, METHANOL. </li></ul></ul><ul><ul><ul><li>VEGETABLE OILS (AND ANIMAL FATS) ARE A MIXTURE OF TRIGLYCERIDES OF MOSTLY “C18” FATTY ACIDS (OLEIC, LINOLEIC, ETC.) </li></ul></ul></ul><ul><ul><ul><li>REACTION WITH ~12 WT% OF AN ALKYL ALCOHOL SUCH AS METHANOL, ETHANOL FORMS A MIXTURE OF FATTY ACID ALKYL ESTERS PLUS CO-PRODUCT GLYCEROL. THE PRODUCTS ARE THEN SEPARATED & (IF NECESSARY) REFINED </li></ul></ul></ul><ul><ul><ul><li>HIGHER ALKYL ALCOHOLS (PROPYL, BUTYL) CAN ALSO BE USED – CHOICE DETERMINED BY FUEL PROPERTIES SOUGHT </li></ul></ul></ul>
35. 35. BIODIESEL: HISTORY OF USE AS A FUEL <ul><li>BIODIESEL FIRST USED IN ENGINES IN THE 1890’s </li></ul><ul><ul><li>BY RUDOLPH DIESEL (UNMODIFIED PEANUT OIL!) </li></ul></ul><ul><ul><li>METHYLATED SOYBEAN OIL IN COMMON USE UNTIL ABOUT 1920 - REPLACED BY MUCH CHEAPER PETROLEUM DIESEL </li></ul></ul><ul><ul><li>SOME USE BY GERMANY IN WW2 BUT SYNTHETIC DIESEL AND SYNTHETIC AVIATION GASOLINE WERE MORE SUCCESSFUL </li></ul></ul><ul><ul><li>NO REAL INTEREST UNTIL THE FOREIGN OIL SUPPLY CRISIS OF THE 1970s. THEN BIODIESEL WAS SEEN AS A DIESEL “EXTENDER” </li></ul></ul><ul><ul><li>INTEREST IN BIODIESEL AS A “GREEN” FUEL IS MORE RECENT. </li></ul></ul><ul><ul><li>NOW USED FOR HIGH LUBRICITY, CONTRIBUTION TO ENERGY INDEPENDENCE, EMISSIONS REDUCTIONS (PM, HC, CO BUT NOT NOx), CO 2 “RECYCLING” </li></ul></ul><ul><ul><li>HISTORY: POOR QUALITY; IMPROVING, BUT A LONG WAY TO GO. </li></ul></ul><ul><ul><li>STILL NOT WELL UNDERSTOOD COMPARED TO PETROLEUM DIESEL </li></ul></ul>
36. 36. DIESEL & BIODIESEL: DENSITY AND CETANE NUMBER OK NOT OK
37. 37. BIODIESEL: IMPACT ON HD VEHICLE EMISSIONS [NOTE UNCERTAINTY OF NO X DATA] “ SPREAD”
38. 38. OTHER DIESEL BIOFUELS <ul><li>BIODIESEL HAS STRONG COMPETITION! </li></ul><ul><ul><li>ETHANOL (E-DIESEL - FROM CORN, NOW BIOMASS) </li></ul></ul><ul><ul><ul><li>USED AS AN OXYGENATED ADDITIVE (10-15%) </li></ul></ul></ul><ul><ul><ul><li>SUPPOSEDLY IMPROVES EMISSIONS, COLD STARTS </li></ul></ul></ul><ul><ul><ul><li>NOT APPROVED BY THE ENGINE MANUFACTURERS </li></ul></ul></ul><ul><ul><li>“ BTL” FUELS (GTL-D OR FT-D WITH A BIOMASS TWIST) </li></ul></ul><ul><ul><ul><li>BIOMASS  SYNGAS  FT SYNTHESIS  REFINED LIQUIDS </li></ul></ul></ul><ul><ul><ul><li>PRODUCT: S-FREE, AROMATICS-FREE DIESEL LOOK-ALIKE </li></ul></ul></ul><ul><ul><ul><li>COST: DEPENDS ON NG COST </li></ul></ul></ul><ul><ul><ul><li>NET ENERGY RECOVERED: STILL UNCERTAIN </li></ul></ul></ul><ul><ul><li>OXYFUELS – E.G., FUEL ALCOHOLS (IF FROM BIOMASS) </li></ul></ul><ul><ul><ul><li>SAME BTL PROCESS, BUT DIFFERENT CATALYSTS AND CONDITIONS </li></ul></ul></ul><ul><ul><ul><li>COST IS LOW </li></ul></ul></ul><ul><ul><ul><li>PRODUCTS INCLUDE ALKYL ALCOHOLS, ETHERS, KETONES </li></ul></ul></ul>
39. 39. BIODIESEL NOTES <ul><li>BIODIESEL FUEL NOTES </li></ul><ul><ul><li>PRIMARY USE IS AS 5-20% ADDITIVE TO PETROLEUM DIESEL AS AN EMISSIONS CONTROL ADDITIVE (VERY EFFECTIVE). B5 AND B10 ARE COMMON. B20 OFFERS LITTLE ADDITIONAL ADVANTAGE PLUS SOME FUEL INSTABILITY & MATERIALS COMPATIBILITY PROBLEMS. BUT THE INDUSTRY WANTS TO GO THERE. </li></ul></ul><ul><ul><li>BIODIESEL ALSO ADDS LUBRICITY TO LOW-SULFUR PETROLEUM DIESELS, A CHARACTERISTIC THAT MAY PROVE VALUABLE AS ULSD FUELS ARE INTRODUCED (STARTED IN OCTOBER 2006) </li></ul></ul><ul><ul><li>THE LOW NET ENERGY RECOVERY IN BIODIESEL MANUFACTURE MEANS THAT USE AS A DIESEL SUBSTITUTE OR EXTENDER IS NOT NORMALLY VIABLE, EVEN WITH THE NEW SUBSIDIES </li></ul></ul>
40. 40. BIODIESEL NOTES (2) <ul><li>BIODIESEL FUEL NOTES </li></ul><ul><ul><li>FOR OPTIMUM ENERGY CONSERVATION IT IS BETTER TO BURN SOYBEANS AS FURNACE FUEL! (SAME PROBLEM AS CORN ETHANOL) </li></ul></ul><ul><ul><li>BIODIESEL WILL EXPERIENCE MAJOR COMPETITION FROM SYNTHETIC FUELS THAT OFFER MANY OF THE SAME PROPERTIES </li></ul></ul><ul><ul><li>SOME OF THESE SYNTHETICS MAY BE DERIVED FROM BIOMASS… BUT THEY ARE NOT HERE YET. </li></ul></ul><ul><ul><li>BIODIESEL IS LESS COMPRESSIBLE THAN STANDARD DIESEL, SYNTHETIC DIESEL IS MORE COMPRESSIBLE – THIS CAN AFFECT INJECTOR PERFORMANCE AND TIMING. </li></ul></ul>
41. 41. BIODIESEL NOTES (3) <ul><li>ARE THERE BETTER ROUTES TO BIODIESEL? THE RIGHT CHOICE WOULD: </li></ul><ul><ul><li>AVOID USE OF METHANOL (FOSSIL-BASED) </li></ul></ul><ul><ul><li>AVOID GLYCEROL FORMATION </li></ul></ul><ul><ul><li>PRODUCE A PRODUCT OF HIGHER QUALITY AND FUNCTIONAL PERFORMANCE </li></ul></ul><ul><ul><li>PRODUCE MORE OF THE DESIRED END-PRODUCT (FATTY ACID ALKYL ESTERS – OR A WHOLE NEW CONCEPT FOR BIODIESEL) </li></ul></ul><ul><ul><li>PRODUCE A PRODUCT OF HIGHER ENERGY CONTENT (NOT A CRITICAL ISSUE) </li></ul></ul><ul><ul><li>PRODUCE MORE BIODIESEL PER UNIT OF NATURAL OIL CONSUMED </li></ul></ul>
42. 42. BIODIESEL NOTES (4) <ul><li>BETTER ROUTES TO BIODIESEL? </li></ul><ul><ul><li>PROGRESS MADE IN SEVERAL AREAS, EG: </li></ul></ul><ul><ul><ul><li>AVOID HEXANE EXTRACTION OF SOYBEAN OIL BY PROCESSING BEAN FLAKE WITH MeOH AND CAT </li></ul></ul></ul><ul><ul><ul><li>CONTINUOUS PROCESSING USING NON-ALKALINE HETEROGENEOUS CATALYST </li></ul></ul></ul><ul><ul><ul><li>REPLACEMENT OF METHANOL WITH BIO ETHANOL </li></ul></ul></ul><ul><ul><ul><li>NExBTL – FORTUM OIL & GAS (FORMERLY NESTE OY) PROCESS PRODUCES HIGH-QUALITY HYDROGENATED PRODUCT – OTHERS FOLLOWING </li></ul></ul></ul><ul><ul><ul><li>NUMEROUS OTHER PROJECTS ONGOING </li></ul></ul></ul><ul><ul><ul><li>FOR MORE BACKUP INFO (MUCH DETAIL HERE): http://www.castoroil.in/reference/plant_oils/uses/fuel/bio_fuels.html </li></ul></ul></ul>
43. 43. BIODIESEL NOTES (5) <ul><li>BETTER ALTERNATIVES TO BIODIESEL ? </li></ul><ul><ul><li>MULTIPLE CHOICES, EG: </li></ul></ul><ul><ul><ul><li>A VARIETY OF BIOMASS  “BIODIESEL” TECH: </li></ul></ul></ul><ul><ul><ul><li>FERMENTATION OF BIOMASS  MIXED ALCOHOLS </li></ul></ul></ul><ul><ul><ul><li>BIOMASS GASIFICATION  SYNGAS  ALCOHOLS </li></ul></ul></ul><ul><ul><ul><li>BIOMASS GASIFICATION  SYNGAS  SYNTHETIC HYDROCARBONS </li></ul></ul></ul><ul><ul><ul><li>CAN ALSO CONVERT DIRECTLY TO A MIXTURE OF HYDROCARBON AND ALCOHOL (DIFFICULT!) </li></ul></ul></ul><ul><ul><ul><li>MANY BTL FUELS, WHETHER OXYGENATES OR HYDROCARBONS, PERFORM AS WELL AS BIODIESEL OR (IN GASOLINE) ETHANOL </li></ul></ul></ul>
44. 44. BIODIESEL NOTES (6) <ul><li>CAN WE MODIFY BIODIESEL FOR BETTER PERFORMANCE ? </li></ul><ul><ul><li>THE “OLEOCHEMISTS” HAVE BEEN DOING THIS FOR YEARS – FOR FOOD OR INDUSTRIAL USES: </li></ul></ul><ul><ul><ul><li>INTEREST IN SWITCHING AWAY FROM PETROLEUM: </li></ul></ul></ul><ul><ul><ul><li>FISH AND ANIMAL OILS AND FATS OUT OF PUBLIC FAVOR, ESPECIALLY IN EUROPE (NOT IN SE ASIA!) </li></ul></ul></ul><ul><ul><ul><li>USE OF PLANT BREEDING TO ADJUST OIL CHEMISTRY </li></ul></ul></ul><ul><ul><ul><li>EG, GM RAPESEED FOR LAURIC ACID PRODUCTION </li></ul></ul></ul><ul><ul><ul><li>BUT…CONCERN OVER USE OF GM, SO MAY BE BETTER TO CHEMICALLY MODIFY THE NATURAL OIL </li></ul></ul></ul><ul><ul><ul><li>SURFACTANTS ARE A MAJOR DERIVATIVE OF OILS </li></ul></ul></ul><ul><ul><ul><li>SO ARE A WIDE RANGE OF PAINTS AND COATINGS (ONE OF THE OLDEST USES OF NATURAL OILS) </li></ul></ul></ul><ul><ul><ul><li>PLENTY OF UNIQUE CHEMISTRY – CAN WE USE IT FOR BIODIESEL IMPROVEMENT? </li></ul></ul></ul>
45. 45. BIODIESEL NOTES (7) <ul><li>CAN WE MODIFY BIODIESEL FOR BETTER PERFORMANCE ? </li></ul><ul><ul><li>HYDROPROCESSING OR FUNCTIONALIZATION? EXAMPLES: </li></ul></ul><ul><ul><ul><li>CONTROLLED UNSATURATION FOR CURABLE APPLICATIONS: </li></ul></ul></ul><ul><ul><ul><li>WHAT IS GAINED BY INTRODUCING CHAIN-BRANCHING? </li></ul></ul></ul><ul><ul><ul><li>USE FOR BIO-BASED AND “BIODEGRADABLE” LUBRICANTS – CONFLICTING OBJECTIVES </li></ul></ul></ul><ul><ul><ul><li>AMINE AND OTHER FUNCTIONALIZATION METHODS </li></ul></ul></ul><ul><ul><ul><li>CAN EPOXIDIZE OR MALEINATE NATURAL OILS TO ACHIEVE POLYESTER-LIKE POLYMERS </li></ul></ul></ul><ul><ul><ul><li>AGAIN, PLENTY OF UNIQUE CHEMISTRY – CAN WE USE IT FOR BIODIESEL IMPROVEMENT? </li></ul></ul></ul><ul><ul><ul><li>READ http://www.cyberlipid.org/fa/acid0001.htm </li></ul></ul></ul><ul><ul><ul><li>CAN FRACTIONATE, HYDROGENATE, INTERESTERIFY… </li></ul></ul></ul><ul><ul><ul><li>LITTLE FUELS WORK TO DATE – THE JURY IS STILL OUT </li></ul></ul></ul><ul><li>CAN WE MODIFY BIODIESEL FOR BETTER PERFORMANCE ? </li></ul><ul><ul><li>HYDROPROCESSING OR FUNCTIONALIZATION? EXAMPLES: </li></ul></ul><ul><ul><ul><li>CONTROLLED UNSATURATION FOR CURABLE APPLICATIONS: </li></ul></ul></ul><ul><ul><ul><li>WHAT IS GAINED BY INTRODUCING CHAIN-BRANCHING? </li></ul></ul></ul><ul><ul><ul><li>USE FOR BIO-BASED AND “BIODEGRADABLE” LUBRICANTS – CONFLICTING OBJECTIVES </li></ul></ul></ul><ul><ul><ul><li>AMINE AND OTHER FUNCTIONALIZATION METHODS </li></ul></ul></ul><ul><ul><ul><li>CAN EPOXIDIZE OR MALEINATE NATURAL OILS TO ACHIEVE POLYESTER-LIKE POLYMERS </li></ul></ul></ul><ul><ul><ul><li>AGAIN, PLENTY OF UNIQUE CHEMISTRY – CAN WE USE IT FOR BIODIESEL IMPROVEMENT? </li></ul></ul></ul><ul><ul><ul><li>READ http://www.cyberlipid.org/fa/acid0001.htm </li></ul></ul></ul><ul><ul><ul><li>CAN FRACTIONATE, HYDROGENATE, INTERESTERIFY… </li></ul></ul></ul><ul><ul><ul><li>LITTLE FUELS WORK TO DATE – THE JURY IS STILL OUT </li></ul></ul></ul>