Your SlideShare is downloading. ×
0
A Study on Constitution and Properties of Gypsum-Polymer Composites  Author: Hesham Abdel Rehim, MSc.  Supervisor: Assoc. ...
<ul><li>Gypsum is considered as one of the most common non-metallic minerals. </li></ul><ul><li>It consists of calcium sul...
Dehydration:   CaSO 4 .2H 2 O  +  Energy  ->  CaSO 4 .½H 2 O  +  1½ H 2 O   CaSO 4 .½H 2 O  +  Energy  ->   -CaSO 4   +  ...
<ul><li>Wall Lining  </li></ul><ul><li>Roof Lining  </li></ul><ul><li>Floors  </li></ul><ul><li>Partitions  </li></ul><ul>...
<ul><li>The study aimed at the investigation of the effect of using three different vinyl-based polymers on  </li></ul><ul...
Vinyl-based polymers PVA P(VA-co-VAc-co-It) P(VC-co-VAc-co-VA) [ CH 2 CH ] n OH CH 2 COOH [ CH 2 CH ] x  [ CH 2 CH ] y  [ ...
1. Assessment of the starting materials (Plaster & polymers). 2. Formation of different polymer/plaster composites. 3. Mea...
<ul><li>H 2 O and CO 2  were determined by weight loss at 240 and 1000  o C respectively. </li></ul>XRF data of the tested...
PVA/plaster composites Mechanical properties --- --- --- 19.5 ± 0.7 16.1 ± 0.3 7.6 ± 0.3 4.0 --- --- --- 22.0 ± 0.6 17.5 ±...
PVA/plaster composites 1- Compressive strength with aging time 2- Compressive strength with polymer concentration
PVA/plaster composites Microstructure
P(VA-co-VAc-co-It)/plaster composites Mechanical properties --- --- --- 19.1 ± 0.11 17.9 ± 0.07 8.0 ± 0.05 2.0 --- --- ---...
P(VA-co-VAc-co-It)/plaster composites 1- Compressive strength with aging time 2- Compressive strength with polymer concent...
P(VA-co-VAc-co-It)/plaster composites Microstructure  Neat plaster 2.0 wt. % 1.2 wt. %
P(VC-co-VAc-co-VA)/plaster composites Mechanical properties --- --- --- 17.7 ± 0.09 17.3 ± 0.12 8.3 ± 0.06 8.0 6.8 ± 0.07 ...
1- Compressive strength with aging time P(VC-co-VAc-co-VA)/plaster composites 2- Compressive strength with polymer concent...
Microstructure P(VC-co-VAc-co-VA)/plaster composites 1 wt. % 2 wt. % 3 wt. % 8 wt. % 4 wt. % 6 wt. %
Microstructure P(VC-co-VAc-co-VA)/plaster composites
X- Ray diffraction P(VC-co-VAc-co-VA)/plaster composites 1 wt. % 8 wt. % (a) (b)
Neat plaster  PVA/plaster 1.0 wt. % P(VA- co -VAc- co -It)/plaster 1.2 wt. %   P(VC- co -VAc- co -VA)/plaster 4.0 wt. %   ...
Bioactivity of Gypsum and Gypsum-Polymer Composites Ca and P concentrations
Bioactivity of Gypsum and Gypsum-Polymer Composites Variations in the pH of SBF solutions
Bioactivity of Gypsum and Gypsum-Polymer Composites Neat plaster Gypsum after treatment in SBF followed by 1.5 SBF for a w...
<ul><li>Phase compositions of gypsum and gypsum-polymer composite solids after immersion in SBF and 1.5 SBF solutions for ...
<ul><li>Scanning electron micrographs of gypsum composites containing a) polymer I, b) polymer II and c) polymer III after...
<ul><li>Scanning electron micrographs of gypsum composites containing a) polymer I, b) polymer II and c) polymer III after...
<ul><li>SEM micrographs of a) Apatite spherolites grown on a gypsum/polymer II composite, and b) Detailed </li></ul><ul><l...
<ul><li>The purity of the tested gypsum plaster sample was calculated to be around 96 % CaSO 4 .½H 2 O with small amount o...
<ul><li>P(VC- co -VAc- co -VA)/plaster composites achieved a compressive strength value of 21.0 MPa, which is 15% higher t...
- Onderj Gedeon Doc.RNDr., Ph.D. - Ale š  Helebrant Doc. Ing., CSc. - Jana Andertová Ing., CSc. - Jan Macháček Ing., Ph.D....
Thank you for your attention
Upcoming SlideShare
Loading in...5
×

Gypsum polymer composites 2008

1,118

Published on

A research work done by Dr. Hesham El-Maghraby, hf_elmaghraby@yahoo.com

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,118
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
33
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Gypsum polymer composites 2008"

  1. 1. A Study on Constitution and Properties of Gypsum-Polymer Composites Author: Hesham Abdel Rehim, MSc. Supervisor: Assoc. Prof., RNDr. Ondrej Gedeon, Ph.D.
  2. 2. <ul><li>Gypsum is considered as one of the most common non-metallic minerals. </li></ul><ul><li>It consists of calcium sulphate dihydrate (CaSO 4 .2H 2 O). </li></ul><ul><li>It occurs in various forms such as Selenite, Alabaster, Satin spar, Rock gypsum and Gypsite. </li></ul><ul><li>It is the mother rock for different chemical industries and various applications. </li></ul><ul><li>When pure it contains 32.5 wt. % Lime (CaO), 46.6 wt. % sulphur trioxide (SO 3 ) and 20.9 wt. % water. </li></ul><ul><li>It is one of the softest mineral, with a hardness of 2.0 on the Mohs’ scale of hardness (Phillips and Griffin1981). </li></ul>Introduction
  3. 3. Dehydration: CaSO 4 .2H 2 O + Energy -> CaSO 4 .½H 2 O + 1½ H 2 O CaSO 4 .½H 2 O + Energy ->  -CaSO 4 + ½H 2 O Gypsum Technology Rehydration: CaSO 4 .½ H 2 O+ 1½H 2 O -> CaSO 4 .2H 2 O + Energy
  4. 4. <ul><li>Wall Lining </li></ul><ul><li>Roof Lining </li></ul><ul><li>Floors </li></ul><ul><li>Partitions </li></ul><ul><li>Ceilings </li></ul>Living with gypsum ...
  5. 5. <ul><li>The study aimed at the investigation of the effect of using three different vinyl-based polymers on </li></ul><ul><li>The mechanical properties of the formed composites. </li></ul><ul><li>The microstructure of the formed composites. </li></ul><ul><li>Preliminary bioactivity of the formed composites. </li></ul>Aim of the work
  6. 6. Vinyl-based polymers PVA P(VA-co-VAc-co-It) P(VC-co-VAc-co-VA) [ CH 2 CH ] n OH CH 2 COOH [ CH 2 CH ] x [ CH 2 CH ] y [ CH 2 C ] z OH COOCH 3 COOH [ CH 2 CH ] x [ CH 2 CH ] y [ CH 2 CH ] z Cl COOCH 3 OH
  7. 7. 1. Assessment of the starting materials (Plaster & polymers). 2. Formation of different polymer/plaster composites. 3. Measuring of the mechanical properties. 4. Correlation with the microstructure. 5. Studying of the bioactivity of gypsum and gypsum- polymer composites. Experimental Work
  8. 8. <ul><li>H 2 O and CO 2 were determined by weight loss at 240 and 1000 o C respectively. </li></ul>XRF data of the tested plaster Physicomechanical properties of the tested plaster Trace 2.05 16.99 39.18 0.93 40.41 8.96 x10 3 0.43 Mol % Trace 1.54 5.28 53.55 0.64 38.53 0.02 0.44 Wt. % NaCl *CO 2 *H 2 O SO 3 MgO CaO R 2 O 3 SiO 2 Type 8.7±02 6.7±02 4.3±02 18.2±2 17.7±3 8.5±09 30’00” 26’30” 7 days 3 days one day 7 days 3 days one day Final Initial 46 Bending Strength (MPa) CompressiveStrength (MPa) Mechanical Properties Setting Time (min) Normal Consistency (%)
  9. 9. PVA/plaster composites Mechanical properties --- --- --- 19.5 ± 0.7 16.1 ± 0.3 7.6 ± 0.3 4.0 --- --- --- 22.0 ± 0.6 17.5 ± 0.4 8.6 ± 0.6 3.0 11.9 ± 0.4 10.4 ± 0.2 4.1 ± 0.1 22.8 ± 0.7 19.6 ± 1.2 9.2 ± 0.6 2.0 14.5 ± 0.2 13.1 ± 0.2 4.9 ± 0.1 28.5 ± 0.1 28.4 ± 0.4 12.9 ± 0.4 1.0 11.3 ± 0.2 10.8 ± 0.2 4.5 ± 0.1 25.0 ± 0.3 23.2 ± 1.0 10.9 ± 0.5 0.5 --- --- --- 22.2 ± 0.7 18.7 ± 0.8 10.8 ± 0.6 0.25 8.7 ± 0.2 6.7 ± 0.2 2.3 ± 0.2 18.2 ± 0.2 17.7 ± 0.2 8.5 ± 0.2 0.00 7 Days 3 Days One Day 7 Days 3 Days One Day Bending Strength (MPa) Compressive Strength (MPa) Polymer/plaster wt. %
  10. 10. PVA/plaster composites 1- Compressive strength with aging time 2- Compressive strength with polymer concentration
  11. 11. PVA/plaster composites Microstructure
  12. 12. P(VA-co-VAc-co-It)/plaster composites Mechanical properties --- --- --- 19.1 ± 0.11 17.9 ± 0.07 8.0 ± 0.05 2.0 --- --- --- 20.9 ± 0.06 19.9 ± 0.08 9.1 ± 0.05 1.6 8.7 ± 0.11 6.7 ± 0.06 2.9 ± 0.09 21.4 ± 0.11 20.4 ± 0.13 9.3 ± 0.06 1.4 9.2 ± 0.08 7.1 ± 0.05 3.1 ± 0.09 23.2 ± 0.25 23.1 ± 0.00 10.4 ± 0.07 1.2 8.6 ± 0.11 6.4 ± 0.08 2.4 ± 0.05 22.3 ± 0.11 21.6 ± 0.09 10.1 ± 0.06 1.0 --- --- --- 21.7 ± 0.05 20.7 ± 0.11 9.9 ± 0.07 0.8 --- --- --- 21.5 ± 0.09 20.2 ± 0.05 9.5 ± 0.16 0.6 --- --- --- 20.8 ± 0.08 19.9 ± 0.15 9.2 ± 0.11 0.4 --- --- --- 19.7 ± 0.10 19.2 ± 0.14 8.8 ± 0.05 0.2 8.7 ± 0.23 6.7 ± 0.19 2.3 ± 0.16 18.2 ± 0.16 17.7 ± 0.18 8.5 ± 0.21 0.0 7 Days 3 Days One Day 7 Days 3 Days One Day Bending Strength (MPa) Compressive Strength (MPa) Polymer wt. %
  13. 13. P(VA-co-VAc-co-It)/plaster composites 1- Compressive strength with aging time 2- Compressive strength with polymer concentration
  14. 14. P(VA-co-VAc-co-It)/plaster composites Microstructure Neat plaster 2.0 wt. % 1.2 wt. %
  15. 15. P(VC-co-VAc-co-VA)/plaster composites Mechanical properties --- --- --- 17.7 ± 0.09 17.3 ± 0.12 8.3 ± 0.06 8.0 6.8 ± 0.07 6.4 ± 0.12 2.9 ± 0.05 17.9 ± 0.05 17.8 ± 0.13 9.9 ± 0.08 6.0 8.9 ± 0.13 8.0 ± 0.19 2.9 ± 0.09 21.0 ± 0.16 19.9 ± 0.08 13.2 ± 0.05 4.0 8.1 ± 0.07 7.8 ± 0.11 2.6 ± 0.05 20.1 ± 0.06 19.2 ± 0.08 12.6 ± 0.09 3.0 --- --- --- 19.3 ± 0.05 18.8 ± 0.07 12.1 ± 0.06 2.0 --- --- --- 18.9 ± 0.08 18.0 ± 0.05 11.0 ± 0.12 1.0 8.7 ± 0.23 6.7 ± 0.19 2.3 ± 0.16 18.2 ± 0.16 17.7 ± 0.18 8.5 ± 0.21 0.0 7 Days 3 Days One Day 7 Days 3 Days One Day Bending Strength (MPa) Compressive Strength (MPa) Polymer wt. %
  16. 16. 1- Compressive strength with aging time P(VC-co-VAc-co-VA)/plaster composites 2- Compressive strength with polymer concentration
  17. 17. Microstructure P(VC-co-VAc-co-VA)/plaster composites 1 wt. % 2 wt. % 3 wt. % 8 wt. % 4 wt. % 6 wt. %
  18. 18. Microstructure P(VC-co-VAc-co-VA)/plaster composites
  19. 19. X- Ray diffraction P(VC-co-VAc-co-VA)/plaster composites 1 wt. % 8 wt. % (a) (b)
  20. 20. Neat plaster PVA/plaster 1.0 wt. % P(VA- co -VAc- co -It)/plaster 1.2 wt. % P(VC- co -VAc- co -VA)/plaster 4.0 wt. % 28.5 MPa (56 %) 23.2 MPa (27 %) 21.0 MPa (15 %) 18.2 MPa
  21. 21. Bioactivity of Gypsum and Gypsum-Polymer Composites Ca and P concentrations
  22. 22. Bioactivity of Gypsum and Gypsum-Polymer Composites Variations in the pH of SBF solutions
  23. 23. Bioactivity of Gypsum and Gypsum-Polymer Composites Neat plaster Gypsum after treatment in SBF followed by 1.5 SBF for a week (Low Magnification) Gypsum after treatment in SBF followed by 1.5 SBF for a week ( High Magnification ) Energy-dispersive x-ray analysis of the spot marked by X in micrograph (c).
  24. 24. <ul><li>Phase compositions of gypsum and gypsum-polymer composite solids after immersion in SBF and 1.5 SBF solutions for a week in each. </li></ul>Bioactivity of Gypsum and Gypsum-Polymer Composites
  25. 25. <ul><li>Scanning electron micrographs of gypsum composites containing a) polymer I, b) polymer II and c) polymer III after immersion in SBF for one week. </li></ul>Bioactivity of Gypsum and Gypsum-Polymer Composites
  26. 26. <ul><li>Scanning electron micrographs of gypsum composites containing a) polymer I, b) polymer II and c) polymer III after immersion in SBF for one week, followed by 1.5 SBF for one week. </li></ul>Bioactivity of Gypsum and Gypsum-Polymer Composites
  27. 27. <ul><li>SEM micrographs of a) Apatite spherolites grown on a gypsum/polymer II composite, and b) Detailed </li></ul><ul><li>ultrastructure of a spherolite grown on gypsum/polymer III composite. </li></ul>Bioactivity of Gypsum and Gypsum-Polymer Composites
  28. 28. <ul><li>The purity of the tested gypsum plaster sample was calculated to be around 96 % CaSO 4 .½H 2 O with small amount of siliceous materials and carbonates. The carbonates were calculated to be 1.34 % of MgCO 3 and 1.9 % of CaCO 3 . </li></ul><ul><li>The investigated gypsum plaster sample blended 46 % water and gave long setting time (30 min) with moderate mechanical properties, 8.7 and 18.2 MPa for bending and compressive strengths respectively. </li></ul><ul><li>PVA/plaster composites showed a 56% increase in the compressive strength achieving 28.5 MPa with the addition of only 1.0 % by weight of PVA. </li></ul><ul><li>The influence of addition of P(VA- co -VAc- co -It) to plaster at a slightly higher concentration; 1.2 wt. % showed a maximum compressive strength of 23.2 MPa, which is 27% higher than that of polymer-free gypsum. </li></ul>Conclusions
  29. 29. <ul><li>P(VC- co -VAc- co -VA)/plaster composites achieved a compressive strength value of 21.0 MPa, which is 15% higher than that of polymer-free gypsum (when the polymer added in 4.0 wt. %). </li></ul><ul><li>Findings showed a correlation between the polymer solubility as well as its chemical structure with its effect on the mechanical properties of the produced composites. </li></ul><ul><li>Selected gypsum-polymer composites with the highest mechanical properties were further evaluated for their preliminary bioactivity. SEM micrographs of the SBF-treated composites revealed the formation of bone-like apatite deposits on the composite surfaces as well as inside the open pores. Water insoluble copolymer P(VC- co -VAc- co -VA) showed the greatest extent of apatite coating. </li></ul>
  30. 30. - Onderj Gedeon Doc.RNDr., Ph.D. - Ale š Helebrant Doc. Ing., CSc. - Jana Andertová Ing., CSc. - Jan Macháček Ing., Ph.D. - Dana Rohanová Dr. Ing. Acknowledgement
  31. 31. Thank you for your attention
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×