Your SlideShare is downloading. ×
0
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Resumen casos de factorizacion
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Resumen casos de factorizacion

65,847

Published on

En las diapositivas, se muestran las características de algunos polinomios con su forma de factorizar y unos ejemplos de cada caso.

En las diapositivas, se muestran las características de algunos polinomios con su forma de factorizar y unos ejemplos de cada caso.

Published in: Education
5 Comments
23 Likes
Statistics
Notes
  • excelente me aclaro muchas dudas es una presentacion mas entendible y concreta de los casos de factorizacion.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • super wow me encanto
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • @anleagui Muchas gracias Andres. El blog que tienes es muy interesante. Yo tengo una página en schoology, donde complemento la información de esta presentación con videos, trabajos evaluables y ejercicios de práctica.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • MUY BUENA SU INFORMACION PERO SI QUIEREN BUSCAR MAS INFORMACION SOBRE LOS CASOS DE FACTORIZACION VISITEN MI PAGINA http://ejercicioscasosdefactorizacion.blogspot.com/ AHI ENCONTRARAN EJERCIOS CON EJEMPLOS Y VIDEOS LOS ESPERO AMIGOS
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • está muy bueno el resumen.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
65,847
On Slideshare
0
From Embeds
0
Number of Embeds
27
Actions
Shares
0
Downloads
657
Comments
5
Likes
23
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. CASOS DE FACTORIZACION IDENTIFICACION DE POLINOMIOS Y PASOS A SEGUIR EN LA FACTORIZACION
  • 2. 1. FACTOR COMUN • ¿Cuándo lo utilizo? Es el primer paso que se debe hacer cuando se va a factorizar un polinomio. • ¿Cómo se factoriza? -El factor debe estar en todos los términos que compone el polinomio. -En las variables, sacar la base con el menor exponente. -En los números, sacar el mayor factor entre ellos. -Se multiplica el factor común por el polinomio.
  • 3. EJEMPLO • Factorice el siguiente polinomio: 12x3y 4 - 36x2y5 – 54x4y6 • Mayor Factor Común: 6x2y4 • Factorización: 6x2y4(2x – 6y – 9y2x2) • Ahora prueba con el siguiente polinomio: 64s8t6 – 48s5t3+72s6t3
  • 4. 2. DIFERENCIA DE CUADRADOS • ¿Cuándo lo utilizo? -Cuando haya un binomio. -Cuando los dos términos son cuadrados perfectos. -En medio de los dos términos hay una resta. • ¿Cómo se factoriza? -Sacar la raíz cuadrada de cada término. -Formar dos binomios, uno suma y otro resta de las raíces cuadradas, multiplicándose entre si.
  • 5. EJEMPLO • Factorice el siguiente polinomio: 16r2 – 49 • Raíces cuadradas: 4r y 7 • Factorización: (4r - 7)(4r + 7) • Ahora prueba con el siguiente polinomio: 81x2 - 121
  • 6. 3. DIFERENCIA DE CUBOS • ¿Cuándo lo utilizo? -Cuando hay un binomio. -Cuando los dos términos son cubos perfectos. -En medio de los dos términos hay una resta. • ¿Cómo se factoriza? -Sacar la raíz cúbica de cada término, estos van a formar un binomio con resta, que van a multiplicar un trinomio conformado por el cuadrado de la primera raíz, más el producto entre las dos raíces, más la última raíz al cuadrado.
  • 7. EJEMPLO • Factorice el siguiente polinomio: x3 – 27 • Raíces cúbicas: x y 3 • Factorización: (x – 3)(x2 + 3x + 9) • Ahora pruebe con el siguiente polinomio: x9 – 64
  • 8. 4. SUMA DE CUBOS • ¿Cuándo lo utilizo? -Cuando hay un binomio. -Cuando los dos términos son cubos perfectos. -En medio de los dos términos hay una suma. • ¿Cómo se factoriza? -Sacar la raíz cúbica de cada término, estos van a formar un binomio con suma, que van a multiplicar un trinomio conformado por el cuadrado de la primera raíz, menos el producto entre las dos raíces, más la última raíz al cuadrado.
  • 9. EJEMPLO • Factorice el siguiente polinomio: x6 + 125 • Raíces cúbicas: x2 y 5 • Factorización: (x2 + 5)(x4 - 5x2 + 25) • Ahora pruebe con el siguiente polinomio: x3 + 729
  • 10. 5. TRINOMIO CUADRADO PERFECTO • ¿Cuándo lo utilizo? -Cuando hay un trinomio. -Cuando el primer y último término son cuadrados perfectos y positivos. -El segundo término es el doble del producto de las raíces cuadradas de los términos cuadrados perfectos. • ¿Cómo se factoriza? -Se saca la raíz cuadrada de cada término cuadrado perfecto. -Se forma una resta de las dos raíces cuadradas elevada al cuadrado, si el segundo término del trinomio es negativo. - Se forma una suma de las dos raíces cuadradas elevada al cuadrado, si el segundo término del trinomio es positivo.
  • 11. EJEMPLO • Factorice el siguiente polinomio: x2 + 6x + 9 • Raíces cuadradas del primer y último término: x y 3 • Factorización: (x + 3)2 • Ahora prueba con el siguiente polinomio: x4 – 10x2 + 25
  • 12. 6. TRINOMIOS DE LA FORMA x2+bx+c • ¿Cuándo lo utilizo? -Es un trinomio. -El coeficiente de la variable cuadrática es uno. -Un término (variable) es cuadrado perfecto. -La raíz cuadrada de la variable está en el término del medio. -Los signos del segundo y último término no importan. • ¿Cómo se factoriza? -Se forman dos binomios multiplicándose entre sí. El primer término de cada binomio es la raíz cuadrada de la variable. -Se buscan dos números que multiplicados den el término c y sumandos den el término b, y éstos números son el segundo término de cada binomio.
  • 13. EJEMPLO • Factorice el siguiente polinomio: x2 + 16x – 36 • Dos números que multiplicados den -36 y sumados 16: 18 y -2 • Factorización: (x + 18)(x – 2) • Ahora prueba con el siguiente polinomio: x2 – 22x + 96
  • 14. 7. TRINOMIOS DE LA FORMA ax2+bx+c • ¿Cuándo lo utilizo? -Es un trinomio. -El coeficiente de la variable cuadrática es mayor a uno. -Un término (variable) es cuadrado perfecto. -La raíz cuadrada de la variable está en el término del medio. -Los signos del segundo y último término no importan. • ¿Cómo se factoriza? -Se multiplican el primer y último término. -Luego, se buscan dos números que multiplicados den ese producto pero que sumados den b. -Con esos dos números se descompone el segundo término como la suma de otros dos términos, formando un polinomio de cuatro términos. -Se agrupan los dos primeros términos y los dos últimos términos. Se saca un factor común de cada binomio y luego se saca el binomio factor común, quedando el producto de dos binomios.
  • 15. EJEMPLO • Factorice el siguiente polinomio: 2x2 – 7x – 15 • Multiplicación del primer y último término: -30x2 • Dos números que multiplicados den -30x2 y sumados -7x : -10x y 3x • Escribir nuevamente el polinomio descomponiendo el término de la mitad: 2x2 – 7x – 15 2x2 – 10x + 3x – 15
  • 16. • Agrupar los dos primeros términos y los dos últimos términos: (2x2 – 10x) + (3x – 15) • Sacar el factor común de cada binomio: 2x(x – 5)+3(x – 5) • Sacar el binomio factor común: (x – 5)(2x + 3) • Ahora prueba con el siguiente polinomio: 2x2 – 17x + 36

×