SlideShare a Scribd company logo
1 of 9
Download to read offline
Anne	
  Bowers	
   ECE/MAE	
  535	
   July	
  14,	
  2014	
  
Helion	
  Dhrimaj	
   Summer	
  2014	
  
NORTH	
  CAROLINA	
  STATE	
  UNIVERSITY	
  
Design	
  of	
  Electromechanical	
  Systems	
  
Semester	
  Design	
  Project	
  
	
  
Electro-­‐Permanent	
  Magnet	
  Clamp	
  
	
  
	
  
	
  
ABSTRACT	
  
	
   Manufacturing	
  processes	
  that	
  involve	
  ‘material	
  removal’	
  (such	
  as	
  milling,	
  drilling,	
  
etc.)	
  depend	
  upon	
  a	
  secure	
  attachment	
  of	
  the	
  work	
  piece	
  to	
  the	
  machine	
  table	
  in	
  order	
  for	
  
the	
  work	
  to	
  be	
  completed	
  safely	
  and	
  with	
  the	
  desired	
  precision.	
  	
  Traditionally	
  a	
  mechanical	
  
clamp	
  would	
  be	
  used	
  to	
  secure	
  the	
  work	
  piece,	
  but	
  this	
  process	
  can	
  become	
  tedious	
  and	
  
time	
  consuming.	
  	
  In	
  an	
  effort	
  to	
  improve	
  upon	
  these	
  two	
  issues,	
  an	
  electro-­‐magnetic	
  
solution	
  was	
  developed.	
  	
  An	
  electromagnet	
  would	
  be	
  turned	
  on	
  to	
  secure	
  the	
  work	
  piece	
  to	
  
the	
  table,	
  due	
  to	
  reluctance	
  forces,	
  and	
  then	
  would	
  be	
  switched	
  off	
  when	
  the	
  process	
  was	
  
finished.	
  	
  This	
  solution	
  was	
  able	
  to	
  provide	
  the	
  desired	
  faster	
  and	
  easier	
  set	
  up,	
  but	
  now	
  
had	
  the	
  additional	
  risk	
  of	
  catastrophic	
  failure	
  during	
  a	
  power	
  interruption,	
  and	
  was	
  
expensive	
  to	
  operate	
  due	
  to	
  high	
  power	
  consumption.	
  	
  The	
  electro-­‐permanent	
  magnet	
  
clamp	
  is	
  a	
  new	
  design	
  that	
  strives	
  to	
  maintain	
  the	
  fast	
  and	
  easy	
  setup	
  provided	
  by	
  the	
  
electromagnetic	
  clamp,	
  while	
  making	
  use	
  of	
  rare	
  earth	
  magnets	
  to	
  minimize	
  power	
  
consumption.	
  
	
  
INTRODUCTION	
  
	
   This	
  project	
  will	
  focus	
  on	
  the	
  development	
  of	
  an	
  optimized	
  design	
  for	
  an	
  electro-­‐
permanent	
  magnet	
  clamp.	
  	
  The	
  basic	
  design	
  for	
  the	
  electro-­‐permanent	
  magnet	
  clamp	
  is	
  to	
  
have	
  two	
  different	
  kinds	
  of	
  rare	
  earth	
  magnets	
  distributed	
  within	
  the	
  workbench.	
  	
  NdFeB	
  
magnets	
  are	
  used	
  to	
  provide	
  a	
  strong	
  flux	
  density	
  that	
  is	
  undisturbed	
  regardless	
  of	
  being	
  in	
  
the	
  on	
  or	
  off	
  state.	
  	
  AlNiCo	
  magnets,	
  which	
  have	
  a	
  lower	
  coercivity,	
  are	
  then	
  used	
  to	
  direct	
  
the	
  flux	
  to	
  either	
  stay	
  within	
  the	
  workbench,	
  or	
  through	
  the	
  work	
  piece.	
  	
  The	
  different	
  
states	
  of	
  the	
  clamp,	
  ‘on’	
  or	
  ‘off’,	
  are	
  manipulated	
  by	
  placing	
  the	
  AlNiCo	
  magnets	
  within	
  a	
  
wire	
  coil	
  that	
  can	
  reverse	
  the	
  polarity	
  of	
  the	
  AlNiCo	
  by	
  pulsing	
  current	
  through	
  the	
  coil	
  in	
  
either	
  direction.	
  	
  This	
  results	
  in	
  a	
  clamp	
  that	
  is	
  either	
  ‘on’	
  or	
  ‘off’	
  without	
  the	
  need	
  to	
  
constantly	
  run	
  electricity	
  to	
  sustain	
  an	
  electro-­‐magnet.	
  
	
   Figure	
  1	
  shows	
  the	
  arrangement	
  and	
  polarity	
  of	
  the	
  permanent	
  magnets	
  within	
  the	
  
workbench	
  when	
  the	
  clamp	
  is	
  in	
  the	
  ‘off’	
  state.	
  	
  There	
  are	
  three	
  NdFeB	
  magnets	
  that	
  are	
  
arranged	
  so	
  that	
  their	
  polarities	
  are	
  oriented	
  horizontally.	
  	
  There	
  are	
  two	
  AlNiCo	
  magnets	
  
placed	
  within	
  coils	
  of	
  wire	
  with	
  their	
  polarities	
  oriented	
  vertically.	
  	
  The	
  arrows	
  in	
  the	
  figure	
  
indicate	
  the	
  path	
  of	
  magnetic	
  flux,	
  and	
  show	
  how	
  all	
  flux	
  is	
  ideally	
  contained	
  within	
  the	
  
workbench.	
  	
  This	
  leaves	
  the	
  work	
  piece	
  free	
  to	
  move	
  around	
  for	
  easy	
  adjustment.	
  	
  	
  
	
   Figure	
  2	
  shows	
  that	
  when	
  the	
  AlNiCo	
  magnets	
  are	
  pulsed	
  with	
  sufficient	
  current	
  
through	
  their	
  surrounding	
  coils,	
  a	
  strong	
  enough	
  magnetic	
  field	
  can	
  be	
  generated	
  to	
  
reverse	
  their	
  polarity.	
  	
  This	
  reversal	
  in	
  polarity	
  now	
  directs	
  flux	
  through	
  the	
  work	
  piece,	
  
creating	
  a	
  reluctance	
  force	
  that	
  holds	
  the	
  work	
  piece	
  in	
  place	
  for	
  processing.	
  	
  This	
  is	
  the	
  
Anne	
  Bowers	
   ECE/MAE	
  535	
   July	
  14,	
  2014	
  
Helion	
  Dhrimaj	
   Summer	
  2014	
  
clamp	
  ‘on’	
  state,	
  and	
  it	
  does	
  not	
  require	
  sustained	
  electrical	
  power	
  to	
  maintain	
  the	
  
clamping	
  force,	
  making	
  it	
  both	
  safer	
  and	
  more	
  efficient	
  than	
  the	
  electromagnet	
  clamp.	
  
	
  
	
  
Figure	
  1.	
  Cutaway	
  of	
  Electro-­‐Permanent	
  Magnet	
  Clamp	
  in	
  the	
  ‘Off”	
  State	
  
	
  
	
   	
  
	
  
Figure	
  2.	
  Cutaway	
  of	
  Electro-­‐Permanent	
  Magnet	
  Clamp	
  in	
  the	
  ‘On’	
  State	
  
	
  
	
   The	
  design	
  optimizations	
  for	
  this	
  clamp	
  will	
  focus	
  on	
  minimization	
  of	
  the	
  overall	
  
size	
  and	
  weight	
  of	
  the	
  electro-­‐permanent	
  magnet	
  clamp	
  (EMPC)	
  and	
  required	
  permanent	
  
magnetic	
  materials,	
  NdFeB	
  and	
  AlNiCo,	
  while	
  still	
  maintaining	
  a	
  minimum	
  of	
  500lbs	
  of	
  
vertical	
  reluctance	
  force	
  while	
  in	
  the	
  ‘on’	
  state.	
  	
  Minimization	
  of	
  these	
  two	
  parameters	
  will	
  
reduce	
  the	
  overall	
  cost	
  to	
  produce	
  the	
  clamps.	
  	
  The	
  design	
  will	
  also	
  seek	
  to	
  maximize	
  the	
  
vertical	
  reluctance	
  force	
  as	
  a	
  secondary	
  goal	
  to	
  minimizing	
  the	
  material	
  costs.	
  
	
  
METHODS	
  AND	
  MATERIALS	
  
	
   The	
  materials	
  that	
  will	
  be	
  used	
  for	
  this	
  clamp	
  are	
  AlNiCo	
  permanent	
  magnets,	
  
NdFeB	
  permanent	
  magnets,	
  1025	
  steel,	
  magnet	
  wire,	
  and	
  a	
  230V	
  source.	
  	
  The	
  grades	
  and	
  
volume	
  of	
  the	
  permanent	
  magnets	
  will	
  be	
  part	
  of	
  the	
  design	
  optimization.	
  	
  The	
  size	
  of	
  
magnet	
  wire	
  to	
  be	
  used	
  will	
  need	
  to	
  be	
  determined	
  based	
  on	
  the	
  number	
  of	
  turns	
  required	
  
to	
  generate	
  the	
  magnetic	
  pulse	
  that	
  flips	
  the	
  AlNiCo	
  polarization,	
  and	
  the	
  amount	
  of	
  current	
  
Anne	
  Bowers	
   ECE/MAE	
  535	
   July	
  14,	
  2014	
  
Helion	
  Dhrimaj	
   Summer	
  2014	
  
that	
  can	
  be	
  sustained	
  within	
  the	
  wire.	
  	
  Tables	
  1-­‐3	
  summarize	
  the	
  material	
  properties	
  for	
  
the	
  available	
  permanent	
  magnet	
  materials	
  and	
  1020	
  Steel.	
  	
  1020	
  steel	
  is	
  being	
  considered	
  
because	
  it	
  is	
  the	
  closest	
  grade	
  to	
  1025	
  that	
  is	
  available	
  for	
  simulation.	
  	
  	
  
	
  
Table	
  1.	
  Summary	
  of	
  Properties	
  of	
  Available	
  NdFeB	
  Materials	
  
Available	
  NdFeB	
  Materials	
  
Grade	
   Remanence	
  Flux	
  Density	
   Coercive	
   Max.	
  Energy	
  Density	
  
Br	
   HcB	
   HcJ	
   (BH)max	
  
mT	
   G	
   kA/m	
   Oe	
   kA/m	
   mT	
   G	
   kA/m	
  
N10[3]
	
   690	
   6,900	
   424	
   5,300	
   760	
   9,500	
   90-­‐100	
   7.3-­‐8.1	
  
N38[1]
	
   1,220	
   12,200	
   899	
   11,300	
   955	
   12,000	
   287	
   36	
  
N40[1]
	
   1,250	
   12,500	
   907	
   11,400	
   955	
   12,000	
   302	
   38	
  
N42[1]
	
   1,280	
   12,800	
   915	
   11,500	
   955	
   12,000	
   318	
   40	
  
N52[1]
	
   1,430	
   14,300	
   796	
   10,000	
   876	
   11,000	
   398	
   50	
  
	
  
Table	
  2.	
  Summary	
  of	
  Properties	
  of	
  Available	
  AlNiCo	
  Materials	
  
Available	
  AlNiCo	
  Materials[4]
	
  
Grade	
   Remanence	
  
Flux	
  Density	
  
Coercive	
   Max.	
  Energy	
  
Density	
  
Operating	
  
Temp	
  
MMPA	
  
Br	
   HcB	
   HcJ	
   (BH)max	
   Tw	
  Max	
  
kGs	
   mT	
   kOe	
   kA/m	
   kOe	
   kA/m	
   MGOe	
   kJ/m3	
   C	
  
LNG34	
   11	
   1100	
   0.63	
   50	
   0.65	
   52	
   4.25	
   34	
   525	
   AlNiCo5	
  
LNG37	
   11.8	
   1180	
   0.61	
   49	
   0.64	
   51	
   4.63	
   37	
   525	
   AlNiCo5	
  
LNG40	
   12	
   1200	
   0.63	
   50	
   0.65	
   52	
   5	
   40	
   525	
   AlNiCo5	
  
LNG44	
   12.5	
   1250	
   0.65	
   52	
   0.68	
   54	
   5.5	
   44	
   525	
   AlNiCo5	
  
LNG52	
   13	
   1300	
   0.7	
   56	
   0.73	
   58	
   6.5	
   52	
   525	
   AlNiCo	
  
5DG	
  
LNG60	
   13.5	
   1350	
   0.73	
   58	
   0.75	
   60	
   7.5	
   60	
   525	
   AlNiCo	
  
5-­‐7	
  
	
  
Table	
  3.	
  Summary	
  of	
  Properties	
  of	
  1020	
  Steel	
  
AISI	
  1020	
  Steel	
  Characteristics	
  
Density	
   0.2839	
  lb/in3	
  
Tensile	
  Strength	
   63800	
  psi	
  
Relative	
  Permeability	
  (0.3440	
  T)[2]
	
   1496	
  
Relative	
  Permeability	
  (0.9600	
  T)[2]
	
   444	
  
Relative	
  Permeability	
  	
  (1.4700	
  T)[2]
	
   97	
  
Relative	
  Permeability	
  (1.6150	
  T)[2]
	
   55	
  
	
  
	
   The	
  data	
  in	
  Table	
  1	
  shows	
  that	
  the	
  increase	
  in	
  grade	
  for	
  NdFeB	
  corresponds	
  to	
  an	
  
increase	
  in	
  BHmax,	
  the	
  maximum	
  energy	
  product.	
  	
  It	
  is	
  expected	
  that	
  higher	
  grades	
  of	
  NdFeB	
  
will	
  require	
  less	
  material	
  to	
  make	
  a	
  clamp	
  with	
  sufficient	
  holding	
  force,	
  but	
  depending	
  on	
  
Anne	
  Bowers	
   ECE/MAE	
  535	
   July	
  14,	
  2014	
  
Helion	
  Dhrimaj	
   Summer	
  2014	
  
the	
  market	
  value	
  for	
  different	
  grades,	
  the	
  highest	
  and	
  lowest	
  grade	
  may	
  not	
  prove	
  to	
  be	
  the	
  
most	
  economical	
  choice.	
  	
  The	
  data	
  in	
  Table	
  2	
  indicates	
  that	
  the	
  lower	
  grades	
  of	
  AlNiCo	
  have	
  
a	
  lower	
  coercivity,	
  and	
  so	
  it	
  should	
  take	
  less	
  current	
  in	
  the	
  coils	
  to	
  flip	
  the	
  magnet	
  poles	
  
making	
  it	
  a	
  more	
  efficient	
  clamp	
  to	
  operate.	
  	
  The	
  lower	
  grades	
  will	
  also	
  require	
  more	
  
material	
  because	
  their	
  maximum	
  energy	
  density	
  is	
  lower.	
  	
  	
  
	
   The	
  magnetic	
  flux	
  that	
  is	
  responsible	
  for	
  generating	
  the	
  holding	
  force	
  while	
  the	
  
clamp	
  is	
  in	
  the	
  ‘on’	
  state	
  must	
  also	
  be	
  fully	
  contained	
  in	
  the	
  clamp	
  during	
  the	
  ‘off’	
  state	
  in	
  
order	
  to	
  make	
  it	
  easy	
  to	
  position	
  and	
  adjust	
  the	
  work	
  piece	
  before	
  clamping	
  it	
  down	
  for	
  
work.	
  	
  In	
  order	
  to	
  prevent	
  any	
  flux	
  from	
  travelling	
  through	
  the	
  work	
  piece	
  while	
  the	
  clamp	
  
is	
  in	
  the	
  ‘off’	
  state,	
  the	
  flux	
  supplied	
  by	
  the	
  AlNiCos	
  must	
  equal	
  the	
  flux	
  supplied	
  by	
  NdFeBs.	
  	
  
This	
  can	
  be	
  calculated	
  using	
  equation	
  1,	
  and	
  confirmed	
  by	
  simulation	
  using	
  FEMM.	
  
	
  
𝐵!"#$%& ∗ 𝐴!"#$%& = 𝐵!"#$% ∗ 𝐴!"#$%	
  	
  	
  	
  	
  	
   	
   	
   Eq.	
  (1)	
  
	
  
	
   The	
  data	
  in	
  Table	
  3	
  includes	
  the	
  relative	
  permittivity	
  values	
  for	
  steel	
  at	
  different	
  flux	
  
density	
  values.	
  	
  This	
  is	
  important	
  because	
  it	
  indicates	
  when	
  the	
  steel	
  in	
  the	
  clamp	
  and	
  work	
  
piece	
  are	
  reaching	
  their	
  saturation	
  point.	
  	
  If	
  the	
  steel	
  becomes	
  saturated	
  then	
  energy	
  is	
  
being	
  wasted,	
  and	
  a	
  lower	
  grade	
  of	
  magnet	
  that	
  supplies	
  less	
  flux	
  density	
  will	
  be	
  able	
  to	
  
achieve	
  the	
  same	
  holding	
  force,	
  presumably	
  for	
  less	
  cost.	
  Table	
  3	
  shows	
  that	
  steel	
  becomes	
  
saturated	
  between	
  1.4	
  T	
  and	
  1.6	
  T.	
  	
  Any	
  designs	
  that	
  result	
  in	
  points	
  of	
  flux	
  density	
  greater	
  
than	
  this	
  range	
  should	
  not	
  be	
  considered.	
  
	
   	
  The	
  last	
  parameter	
  is	
  the	
  ability	
  to	
  switch	
  the	
  clamp	
  ‘on’	
  and	
  ‘off’	
  using	
  the	
  coil	
  
bobbins.	
  	
  The	
  minimum	
  current	
  pulse	
  required	
  in	
  the	
  coil	
  bobbins	
  can	
  be	
  predicted	
  using	
  
Ampere’s	
  Law.	
  	
  Ampere’s	
  Law	
  relates	
  the	
  current	
  enclosed	
  by	
  a	
  closed	
  contour	
  integral	
  to	
  
the	
  magnetic	
  field.	
  	
  Equations	
  2,	
  3,	
  and	
  4	
  show	
  Ampere’s	
  Law	
  and	
  how	
  it	
  will	
  be	
  used	
  to	
  
determine	
  the	
  minimum	
  current	
  for	
  turning	
  the	
  clamp	
  on	
  and	
  off.	
  
	
  
𝐻Ÿ 𝑑𝑙
!
!
= 𝐼!"#!	
   	
   	
   	
   	
   Eq.	
  (2)	
  
	
  
𝐻 ∗ 𝐿 = 𝑁 ∗ 𝐼	
  	
  	
   	
   	
   	
   	
   Eq.	
  (3)	
  
	
  
!∗!
!
= 𝑁𝐼 → 𝐼 =
!∗!
!∗!
	
  	
   	
   	
   	
   	
   Eq.	
  (4)	
  
	
   	
  
	
   Given	
  Equation	
  4	
  we	
  can	
  determine	
  the	
  necessary	
  current	
  to	
  turn	
  the	
  clamp	
  on	
  and	
  
off.	
  	
  This	
  relationship	
  shows	
  that	
  the	
  necessary	
  current	
  is	
  directly	
  related	
  to	
  the	
  strength	
  of	
  
the	
  magnetic	
  flux	
  of	
  the	
  AlNiCo	
  magnets,	
  and	
  inversely	
  proportional	
  to	
  the	
  number	
  of	
  turns	
  
wire.	
  	
  The	
  length	
  of	
  wire	
  will	
  be	
  limited	
  by	
  the	
  coil	
  bobbin	
  dimensions	
  and	
  available	
  space,	
  
and	
  the	
  permeability	
  will	
  be	
  determined	
  by	
  the	
  grade	
  of	
  AlNiCo	
  chosen	
  in	
  the	
  final	
  design.	
  	
  
The	
  resistance	
  of	
  the	
  wire	
  is	
  also	
  a	
  factor	
  in	
  determining	
  how	
  much	
  current	
  can	
  be	
  pulsed	
  
with	
  a	
  230V	
  source.	
  	
  The	
  physical	
  properties	
  of	
  several	
  common	
  gauges	
  of	
  magnet	
  wire	
  are	
  
summarized	
  in	
  Table	
  4.	
  	
  	
  
	
  
	
  
	
  
	
  
Anne	
  Bowers	
   ECE/MAE	
  535	
   July	
  14,	
  2014	
  
Helion	
  Dhrimaj	
   Summer	
  2014	
  
Table	
  4.	
  Physical	
  Properties	
  of	
  Different	
  Magnet	
  Wire	
  Sizes	
  
Magnet	
  Wire	
  Specifications	
  
Wire	
  Gauge	
  
(AWG)	
  
Resistance	
  
(Ω/1000ft)	
  
Total	
  
Resistance	
  for	
  
97	
  Turns	
  (Ω)	
  
Maximum	
  
Current	
  	
  w/	
  
230	
  V	
  Source	
  
Cross-­‐sectional	
  Area	
  
for	
  97	
  Turns	
  (in2
)	
  
24	
   25.67	
   2.27	
   101.3	
   0.031	
  
22	
   16.14	
   1.43	
   160.8	
   0.049	
  
20	
   10.15	
   0.897	
   256.4	
   0.078	
  
18	
   6.385	
   0.565	
   407.1	
   0.124	
  
16	
   4.016	
   0.355	
   647.9	
   0.197	
  
	
  
	
   Using	
  the	
  FEMM	
  software	
  introduced	
  in	
  the	
  course,	
  and	
  the	
  provided	
  general	
  layout,	
  
a	
  model	
  was	
  constructed.	
  Figure	
  3	
  shows	
  this	
  layout,	
  including	
  the	
  materials	
  that	
  were	
  
used	
  in	
  the	
  simulation.	
  	
  1020	
  steel	
  was	
  used	
  for	
  the	
  simulation	
  because	
  it	
  was	
  the	
  closest	
  
available	
  material	
  in	
  the	
  material	
  library.	
  	
  The	
  air	
  gap	
  is	
  0.1	
  mm	
  wide,	
  and	
  the	
  model	
  shown	
  
has	
  a	
  depth	
  of	
  2.6cm,	
  which	
  is	
  midway	
  through	
  the	
  clamp.	
  	
  All	
  forces	
  calculated	
  by	
  FEMM	
  
will	
  need	
  to	
  be	
  doubled	
  to	
  account	
  for	
  the	
  other	
  half	
  of	
  the	
  clamp.	
  	
  
	
  
	
  
Figure	
  3.	
  Cross-­‐sectional	
  layout	
  of	
  Electro-­‐Permanent	
  Magnet	
  Clamp	
  
	
  
RESULTS	
  
	
   The	
  initial	
  magnetics	
  simulation	
  results,	
  using	
  NdFeB	
  37	
  and	
  AlNiCo	
  5	
  were	
  able	
  to	
  
achieve	
  an	
  attractive	
  force	
  between	
  the	
  work	
  piece	
  and	
  the	
  body	
  of	
  6034	
  N,	
  which	
  is	
  
roughly	
  1356	
  lbs.	
  	
  This	
  design	
  meets	
  the	
  minimum	
  force	
  specifications,	
  but	
  can	
  be	
  
improved.	
  	
  The	
  magnetic	
  flux	
  was	
  concentrated	
  in	
  the	
  two	
  poles	
  of	
  the	
  workbench	
  at	
  nearly	
  
2	
  Tesla.	
  	
  Given	
  that	
  steel	
  reaches	
  saturation	
  between	
  1.4	
  and	
  1.6	
  Tesla[2],	
  energy	
  was	
  being	
  
wasted	
  in	
  this	
  saturated	
  condition.	
  	
  	
  	
  
	
   The	
  clamp	
  was	
  redesigned	
  to	
  help	
  minimize	
  this	
  inefficiency	
  in	
  each	
  different	
  
magnet	
  grade	
  combination,	
  which	
  is	
  summarized	
  in	
  Table	
  6.	
  	
  The	
  minimum	
  clamp	
  
dimensions	
  that	
  were	
  found	
  to	
  ensure	
  a	
  reasonable	
  path	
  for	
  flux	
  without	
  unnecessary	
  bulk	
  
are	
  summarized	
  in	
  Table	
  5.	
  	
  While	
  the	
  overall	
  size	
  of	
  the	
  clamp	
  is	
  not	
  large	
  in	
  dimensions,	
  it	
  
is	
  ultimately	
  a	
  heavy	
  piece	
  of	
  equipment,	
  totaling	
  around	
  62	
  pounds.	
  	
  The	
  varying	
  height	
  of	
  
the	
  AlNiCo	
  magnets	
  for	
  each	
  design	
  made	
  it	
  difficult	
  to	
  predict	
  exactly	
  how	
  much	
  steel	
  
would	
  be	
  in	
  the	
  pole	
  without	
  knowing	
  the	
  final	
  client	
  design	
  choice,	
  so	
  the	
  total	
  weight	
  is	
  a	
  
conservative	
  maximum	
  based	
  on	
  the	
  presence	
  of	
  no	
  AlNiCo.	
  	
  Any	
  final	
  clamp	
  will	
  have	
  
slightly	
  less	
  steel.	
  
Anne	
  Bowers	
   ECE/MAE	
  535	
   July	
  14,	
  2014	
  
Helion	
  Dhrimaj	
   Summer	
  2014	
  
	
  
Table	
  5.	
  Clamp	
  Steel	
  Weight	
  
Clamp	
  Steel	
  Weight	
  Based	
  1025	
  Steel	
  Density	
  
Clamp	
  Piece	
   Volume	
  (mm3)	
   Volume	
  (in3)	
   Density	
  (lb/in3)	
   	
  Weight	
  (lb)	
  
Pole*	
   245000	
   14.951	
   0.2839	
   4.24	
  
Base	
   1485000	
   90.620	
   0.2839	
   25.73	
  
Sides	
   1862000	
   113.63	
   0.2839	
   32.26	
  
Total	
   3592000	
   219.201	
   -­‐	
   62.23	
  
	
  
Table	
  6.	
  Summary	
  of	
  Minimum	
  Required	
  Dimensions	
  and	
  Cost	
  for	
  Different	
  Magnet	
  Grade	
  
Combinations	
  
Magnet	
  
Combination	
  	
  
Force	
  in	
  
ON	
  
(N)/(lbs)	
  
Force	
  in	
  	
  
OFF	
  
(N)/(lbs)	
  
Max.	
  Satu-­‐	
  
ration	
  
(T)	
  
NdFeB	
  
Dimensi
ons	
  
(mm)	
  
AlNiCo	
  
Dimension
s	
  
(mm)	
  
NdFeB	
  	
  
Price	
  
($)	
  
AlNiCo	
  
Price	
  
($)	
  
I	
  (A)	
  
NdFeB10[8-­‐
11]
/	
  
AlNiCo	
  5[6]	
  
4552.99/
1023	
  	
  
~0/0	
   1.41	
   (60	
  x	
  50	
  
x	
  36)	
  
	
  
(47	
  x	
  46	
  x	
  
17)	
  
	
  
324	
   103.21	
   66.6	
  
NdFeB10[8-­‐
11]
/	
  
AlNiCo	
  5[6]
	
  
6432.22/
1446	
  
	
  
~0/0	
   1.71	
   (60	
  x	
  50	
  
x	
  44)	
  
	
  
(47	
  x	
  46	
  x	
  
45)	
  
396	
   274.99	
   188.
9	
  
NdFeB37[8]
/	
  
AlNiCo6[5][6][7]	
  
2422.7/	
  
544	
  
34/7.6	
   1.293	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
10)	
  
699.50	
   80.57	
   10	
  
NdFeB37[8]
/	
  
AlNiCo6[5][6][7]
	
  
6773.06/
1522	
  
34/7.6	
   1.747	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
30)	
  
699.50	
   241.72	
   100	
  
NdFeB40[9]
/	
  
AlNiCo6[5][6][7]
	
  
2676.94/
601	
  
36.38/	
  
8.1	
  
1.36	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
10)	
  
141.984	
   80.57	
   10	
  
NdFeB40[9]
/	
  
AlNiCo6[5][6][7]
	
  
6853.24/
1540	
  
36.37/	
  
8.1	
  
1.814	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
30)	
  
141.98	
   241.72	
   100	
  
NdFeB52[10]
/	
  
AlNiCo6[5][6][7]
	
  
2488.2/	
  
559	
  
32.157/
7.2	
  
1.374	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
10)	
  
199.18	
   80.57	
   10	
  
NdFeB52[10]
/	
  
AlNiCo6[5][6][7]
	
  
6712/	
  
1508	
  
36.637/
8.2	
  
1.84	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
30)	
  
199.18	
   241.72	
   100	
  
NdFeB37[8]
/	
  
AlNiCo8[5]	
  
2378.9/	
  
535	
  
47.178/
10.6	
  
1.351	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
12.5)	
  
690.50	
   75.72	
   24	
  
NdFeB37[8]
/	
  
AlNiCo8[5]	
  
6669.97/
1500	
  
44.62/	
  
10.0	
  
1.813	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
32.5)	
  
690.50	
   196.89	
   150	
  
NdFeB40[9]
/	
  
AlNiCo8[5]	
  
2463.62/	
  
554	
  
57.72/	
  
13.0	
  
1.366	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
12.5)	
  
141.984	
   75.72	
   24	
  
NdFeB40[9]
/	
  
AlNiCo8[5]
	
  
6756.47/
1519	
  
54.659/
12.3	
  
1.837	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
32.5)	
  
141.984	
   196.89	
   150	
  
NdFeB52[10]
/	
  
AlNiCo8[5]
	
  
2565.4/	
  
577	
  
127/	
  
28.6	
  
1.307	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
12.5)	
  
199.18	
   75.72	
   22	
  
NdFeB52[10]
/	
  
AlNiCo8[5]
	
  
6794.49/
1527	
  
124.4/2
8.0	
  
1.839	
   (60	
  x	
  50	
  
x	
  17)	
  
(47	
  x	
  46	
  x	
  
35)	
  
199.18	
   212.04	
   150	
  
Anne	
  Bowers	
   ECE/MAE	
  535	
   July	
  14,	
  2014	
  
Helion	
  Dhrimaj	
   Summer	
  2014	
  
	
   Figures	
  4-­‐6	
  show	
  results	
  of	
  simulations	
  made	
  with	
  NdFeB	
  10	
  and	
  AlNiCo	
  5	
  magnets.	
  	
  
Simulations	
  of	
  all	
  other	
  magnet	
  combinations	
  yielded	
  similar	
  results.	
  	
  Figure	
  4	
  shows	
  the	
  
clamp	
  in	
  the	
  ‘on’	
  position.	
  	
  The	
  maximum	
  flux	
  density	
  is	
  concentrated	
  in	
  the	
  poles	
  and	
  the	
  
work	
  piece	
  but	
  does	
  not	
  exceed	
  1.41T	
  so	
  minimal	
  amounts	
  of	
  energy	
  are	
  being	
  wasted.	
  	
  
Figure	
  5	
  shows	
  the	
  same	
  clamp	
  in	
  the	
  off	
  state	
  with	
  a	
  measured	
  0.05lbs	
  of	
  off	
  force.	
  	
  That	
  
amount	
  of	
  force	
  should	
  be	
  unnoticeable	
  to	
  anyone	
  responsible	
  for	
  positioning	
  the	
  work	
  
piece.	
  	
  The	
  last	
  figure,	
  figure	
  6,	
  shows	
  the	
  clamp	
  in	
  the	
  midst	
  of	
  switching.	
  	
  The	
  lack	
  of	
  flux	
  
lines	
  through	
  the	
  AlNiCo	
  magnets	
  and	
  coils	
  shows	
  that	
  the	
  current	
  in	
  the	
  coil	
  is	
  at	
  least	
  
strong	
  enough	
  to	
  balance	
  the	
  AlNiCo	
  flux.	
  	
  Any	
  current	
  increase	
  past	
  that	
  point	
  will	
  cause	
  
the	
  AlNiCo	
  magnet	
  poles	
  to	
  flip.	
  
	
  
	
  
Figure	
  4.	
  Clamp	
  with	
  Minimum	
  PM	
  Materials	
  N10	
  and	
  AlNiCo	
  5	
  in	
  On	
  Position	
  with	
  2046lbs	
  
of	
  holding	
  force	
  
	
  
	
  
Figure	
  5.	
  Clamp	
  with	
  Minimum	
  PM	
  Materials	
  N10	
  and	
  AlNiCo	
  5	
  in	
  Off	
  Position	
  with	
  -­‐0.05lbs	
  
of	
  Holding	
  Force	
  
	
  
Anne	
  Bowers	
   ECE/MAE	
  535	
   July	
  14,	
  2014	
  
Helion	
  Dhrimaj	
   Summer	
  2014	
  
	
  
Figure	
  6.	
  Clamp	
  with	
  66.6	
  A	
  of	
  Current	
  During	
  Switching	
  from	
  On	
  to	
  Off	
  
	
  
CONCLUSIONS	
  	
  
	
   The	
  NdFeb10/AlNiCo5	
  combination	
  achieved	
  the	
  required	
  force	
  with	
  a	
  force	
  of	
  
nearly	
  zero	
  in	
  the	
  “OFF”	
  state.	
  For	
  our	
  clamp	
  design,	
  this	
  proved	
  unobtainable	
  with	
  the	
  
higher-­‐grade	
  magnets.	
  As	
  evident	
  in	
  the	
  table	
  above,	
  all	
  of	
  the	
  higher	
  grade	
  magnetic	
  
combinations	
  experienced	
  some	
  force	
  in	
  the	
  air	
  gap	
  during	
  the	
  “OFF”	
  state.	
  
	
   With	
  the	
  NdFeB37,	
  40,	
  and	
  50,	
  the	
  ideal	
  dimensions	
  ranged	
  from	
  (60	
  mm	
  x	
  50mm	
  x	
  
15mm)	
  to	
  (60	
  mm	
  x	
  50mm	
  x	
  22.5	
  mm).	
  This	
  NdFeB37/40/50	
  dimensional	
  range	
  supplied	
  
enough	
  magnetic	
  flux	
  density	
  to	
  achieve	
  500	
  lbs.	
  and	
  1500	
  lbs.	
  of	
  force.	
  At	
  the	
  same	
  time	
  it	
  
minimized	
  the	
  magnetic	
  saturation	
  as	
  well	
  as	
  the	
  force	
  in	
  the	
  OFF	
  state.	
  For	
  the	
  sake	
  of	
  
time,	
  we	
  chose	
  to	
  leave	
  the	
  NdFeB	
  magnets	
  at	
  a	
  constant	
  (60mm	
  x	
  50mm	
  x	
  17mm).	
  The	
  
only	
  variable	
  left	
  to	
  modify	
  was	
  the	
  AlNiCo	
  dimension.	
  According	
  to	
  the	
  reluctance	
  force	
  in	
  
the	
  “ON”	
  state,	
  the	
  AlNiCo5	
  length	
  ranged	
  from	
  (17	
  mm	
  -­‐	
  45	
  mm),	
  the	
  AlNiCo6	
  length	
  
ranged	
  from	
  (10	
  mm-­‐	
  30	
  mm),	
  and	
  the	
  AlNiCo8	
  length	
  ranged	
  from	
  (12.5mm	
  to	
  35	
  mm).	
  
Combinations	
  of	
  higher	
  magnetic	
  grades,	
  NdFeB37	
  and	
  above,	
  as	
  well	
  as	
  AlNiCo6	
  and	
  
above,	
  provided	
  sufficient	
  force	
  for	
  the	
  clamp.	
  On	
  the	
  negative	
  side,	
  these	
  aforementioned	
  
magnets	
  experienced	
  high	
  levels	
  of	
  saturation	
  when	
  designed	
  for	
  the	
  1500	
  lbs.	
  of	
  force.	
  
Furthermore,	
  an	
  air	
  gap	
  force	
  was	
  measured	
  in	
  the	
  FEMM	
  analysis	
  even	
  in	
  the	
  OFF	
  state.	
  
This	
  is	
  more	
  substantial	
  in	
  the	
  NdFeB52/AlNiCo8	
  combination,	
  where	
  we	
  measured	
  a	
  force	
  
close	
  to	
  130	
  N	
  in	
  “OFF”	
  state.	
  
	
   The	
  maximum	
  cross-­‐sectional	
  area	
  that	
  is	
  available	
  for	
  the	
  coil	
  is	
  0.558in2	
  so	
  the	
  
clamp	
  dimensions	
  would	
  accommodate	
  any	
  of	
  the	
  wire	
  sizes	
  in	
  table	
  4.	
  	
  The	
  larger	
  size	
  
wire	
  would	
  be	
  more	
  desirable	
  for	
  the	
  final	
  product	
  because	
  it	
  is	
  better	
  able	
  to	
  handle	
  the	
  
higher	
  current	
  pulses	
  and	
  the	
  heat	
  that	
  is	
  generated	
  during	
  the	
  pulse.	
  	
  
	
   Overall	
  it	
  would	
  be	
  difficult	
  to	
  choose	
  an	
  ideal	
  magnet	
  design.	
  The	
  
NdFeB10/AlNiCo5	
  combination	
  has	
  a	
  high	
  price	
  due	
  to	
  the	
  amount	
  of	
  material	
  being	
  used.	
  
At	
  the	
  same	
  time	
  it	
  experiences	
  almost	
  no	
  force	
  in	
  the	
  “Off”	
  state	
  and	
  relatively	
  low	
  
saturation	
  levels,	
  even	
  for	
  the	
  1500	
  lbs.	
  force	
  requirement.	
  Alternatively,	
  the	
  higher	
  grades	
  
of	
  magnet	
  tend	
  to	
  require	
  less	
  overall	
  material.	
  This	
  equates	
  to	
  slightly	
  lower	
  costs	
  but	
  at	
  
the	
  same	
  time	
  higher	
  levels	
  of	
  saturation	
  result,	
  and	
  a	
  force	
  is	
  present	
  in	
  the	
  “Off”	
  state.	
  
Considering	
  the	
  alternatives	
  we	
  were	
  able	
  to	
  develop,	
  and	
  our	
  ability	
  to	
  	
  apply	
  FEMM	
  as	
  a	
  
tool	
  in	
  the	
  design	
  process,	
  this	
  project	
  has	
  been	
  a	
  good	
  opportunity	
  to	
  demonstrate	
  the	
  
material	
  we	
  have	
  learned	
  throughout	
  the	
  semester.	
  
Anne	
  Bowers	
   ECE/MAE	
  535	
   July	
  14,	
  2014	
  
Helion	
  Dhrimaj	
   Summer	
  2014	
  
REFERENCES	
  
	
  
[1]	
  NdFeB	
  Specialists	
  E-­‐Magnets,	
  Berkhamsted,	
  Herdforshire,	
  UK	
  (2014).	
  “Grades	
  of	
  
Neodymium”	
  (Online)	
  Accessed	
  29	
  July,	
  2014.	
  http://www.ndfeb-­‐
info.com/neodymium_grades.aspx	
  
	
  
[2]	
  Field	
  Precision	
  LLC.,	
  Albuquerque,	
  New	
  Mexico,	
  USA	
  (2014).	
  “Saturation	
  Curves	
  for	
  Soft	
  
Magnetic	
  Materials”	
  (Online)	
  Accessed	
  29	
  July,	
  2014.	
  
http://www.fieldp.com/magneticproperties.html	
  
	
  
[3]	
  Magnetic	
  Materials	
  &	
  Components,	
  Hauppage,	
  New	
  York,	
  USA	
  (2014).	
  “Compression	
  
Bonded	
  Magnets”	
  (Online)	
  Accessed	
  29	
  July,	
  2014.	
  
http://www.mmcmagnetics.com/ourproducts/Bonded/Compression_Bonded.htm	
  
	
  
[4]	
  X-­‐Mag,	
  Inc.,	
  Hangzhou,	
  Zhejiang,	
  China.	
  (2014).	
  "Magnetic	
  Characteristics	
  of	
  AlNiCo	
  
Magnets".	
  	
  
	
  
[5]	
  Arnold	
  Magnetic	
  Technologies	
  Corporation,	
  Rochester,	
  New	
  York,	
  USA	
  (2014).	
  “Alnico	
  8	
  
Magnets”	
  (Online)	
  Accessed	
  29	
  July,	
  2014.	
  http://buyonline.arnoldmagnetics.com/p-­‐11-­‐
alnico-­‐8-­‐magnets.aspx	
  
	
  
[6]	
  Arnold	
  Magnetic	
  Technologies	
  Corporation,	
  Rochester,	
  New	
  York,	
  USA	
  (2014).	
  “Alnico	
  5	
  
Magnets”	
  (Online)	
  Accessed	
  29	
  July,	
  2014.	
  http://buyonline.arnoldmagnetics.com/p-­‐12-­‐
alnico-­‐4-­‐5-­‐magnets.aspx	
  
	
  
[7]	
  Total	
  Magnetic	
  Solutions,	
  Culver	
  City,	
  California,	
  USA	
  (2014).	
  “Properties	
  of	
  Alnico	
  
Magnets”	
  (Online)	
  Accessed	
  29	
  July,	
  2014.	
  
http://www.magnetsales.com/alnico/Alprops.htm	
  
	
  
[8]	
  Magnet	
  Shop,	
  Culver	
  City,	
  California,	
  USA	
  (2014).	
  “Neodymium	
  Block	
  Magnets”	
  (Online)	
  
Accessed	
  29	
  July,	
  2014.	
  	
  http://magnetsales.thomasnet.com/viewitems/block-­‐
magnets/large-­‐neodymium-­‐rectangle-­‐magnets?&forward=1	
  
	
  
[9]	
  CMS	
  Magnetics,	
  Garland,	
  Texas,	
  USA	
  (2014).	
  “Neodymium	
  Magnets”	
  (Online)	
  Accessed	
  
29	
  July,	
  2014.	
  	
  http://www.magnet4sale.com/10-­‐pc-­‐n40-­‐neodymium-­‐magnets-­‐4-­‐10x2-­‐
10x1-­‐10-­‐ndfeb-­‐rare-­‐earth-­‐magnets/	
  
	
  
[10]	
  K	
  &	
  J	
  Magnetics,	
  Inc.,	
  Pipersville,	
  Pennsylvania,	
  USA	
  (2014).	
  “Neodymium	
  Block	
  
Magnets”	
  (Online)	
  Accessed	
  29	
  July,	
  2014.	
  
http://www.kjmagnetics.com/products.asp?cat=11	
  
	
  
[11]	
  Integrated	
  Magnetics,	
  Culver	
  City,	
  California,	
  USA	
  (2014).	
  “Neodymium	
  Iron	
  Boron	
  
Magnets-­‐	
  General	
  Information”	
  (Online)	
  Accessed	
  29	
  July,	
  2014	
  
http://www.intemag.com/NdFeB.html	
  
	
  

More Related Content

What's hot

Sic an advanced semicondctor material for power devices
Sic an advanced semicondctor material for power devicesSic an advanced semicondctor material for power devices
Sic an advanced semicondctor material for power deviceseSAT Publishing House
 
Impact of gamma-ray irradiation on dynamic characteristics of Si and SiC powe...
Impact of gamma-ray irradiation on dynamic characteristics of Si and SiC powe...Impact of gamma-ray irradiation on dynamic characteristics of Si and SiC powe...
Impact of gamma-ray irradiation on dynamic characteristics of Si and SiC powe...IJECEIAES
 
Galfenol Public Release V7
Galfenol Public Release V7Galfenol Public Release V7
Galfenol Public Release V7Eric Summers
 
Structural, Electronic and Gamma Shielding Properties of BxAl1-xAs
Structural, Electronic and Gamma Shielding Properties of BxAl1-xAsStructural, Electronic and Gamma Shielding Properties of BxAl1-xAs
Structural, Electronic and Gamma Shielding Properties of BxAl1-xAsIJMERJOURNAL
 
Power Cycling Simulation of Flip Chip BGAPackage During Stress Relaxation
Power Cycling Simulation of Flip Chip BGAPackage During Stress RelaxationPower Cycling Simulation of Flip Chip BGAPackage During Stress Relaxation
Power Cycling Simulation of Flip Chip BGAPackage During Stress RelaxationYuSheng Lai
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...researchinventy
 
Packaging Ceramic DC Link Capacitors for Wide-Bandgap Applications
Packaging Ceramic DC Link Capacitors for Wide-Bandgap ApplicationsPackaging Ceramic DC Link Capacitors for Wide-Bandgap Applications
Packaging Ceramic DC Link Capacitors for Wide-Bandgap ApplicationsKEMET Electronics Corporation
 
IRJET- Modeling and Simulation of Electric Discharge Machine (EDM) and WEDM u...
IRJET- Modeling and Simulation of Electric Discharge Machine (EDM) and WEDM u...IRJET- Modeling and Simulation of Electric Discharge Machine (EDM) and WEDM u...
IRJET- Modeling and Simulation of Electric Discharge Machine (EDM) and WEDM u...IRJET Journal
 
Welding performance of a 2 kw continuous wave supermodulated ndyag laser incr...
Welding performance of a 2 kw continuous wave supermodulated ndyag laser incr...Welding performance of a 2 kw continuous wave supermodulated ndyag laser incr...
Welding performance of a 2 kw continuous wave supermodulated ndyag laser incr...JK Lasers
 
IRJET-Ballistic Performance of Bi-Layer Alumina/Aluminium and Honeycomb Sandw...
IRJET-Ballistic Performance of Bi-Layer Alumina/Aluminium and Honeycomb Sandw...IRJET-Ballistic Performance of Bi-Layer Alumina/Aluminium and Honeycomb Sandw...
IRJET-Ballistic Performance of Bi-Layer Alumina/Aluminium and Honeycomb Sandw...IRJET Journal
 
Optimum design of automotive composite drive shaft
Optimum design of automotive composite drive shaftOptimum design of automotive composite drive shaft
Optimum design of automotive composite drive shaftiaemedu
 
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s)  Reinforced Ep...Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s)  Reinforced Ep...
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...IJMER
 
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCsDevelopment of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCsKEMET Electronics Corporation
 

What's hot (19)

Sic an advanced semicondctor material for power devices
Sic an advanced semicondctor material for power devicesSic an advanced semicondctor material for power devices
Sic an advanced semicondctor material for power devices
 
Impact of gamma-ray irradiation on dynamic characteristics of Si and SiC powe...
Impact of gamma-ray irradiation on dynamic characteristics of Si and SiC powe...Impact of gamma-ray irradiation on dynamic characteristics of Si and SiC powe...
Impact of gamma-ray irradiation on dynamic characteristics of Si and SiC powe...
 
2.1.2wire-wound
2.1.2wire-wound2.1.2wire-wound
2.1.2wire-wound
 
Galfenol Public Release V7
Galfenol Public Release V7Galfenol Public Release V7
Galfenol Public Release V7
 
Structural, Electronic and Gamma Shielding Properties of BxAl1-xAs
Structural, Electronic and Gamma Shielding Properties of BxAl1-xAsStructural, Electronic and Gamma Shielding Properties of BxAl1-xAs
Structural, Electronic and Gamma Shielding Properties of BxAl1-xAs
 
Jp3616641669
Jp3616641669Jp3616641669
Jp3616641669
 
Power Cycling Simulation of Flip Chip BGAPackage During Stress Relaxation
Power Cycling Simulation of Flip Chip BGAPackage During Stress RelaxationPower Cycling Simulation of Flip Chip BGAPackage During Stress Relaxation
Power Cycling Simulation of Flip Chip BGAPackage During Stress Relaxation
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...
 
RC255
RC255RC255
RC255
 
Packaging Ceramic DC Link Capacitors for Wide-Bandgap Applications
Packaging Ceramic DC Link Capacitors for Wide-Bandgap ApplicationsPackaging Ceramic DC Link Capacitors for Wide-Bandgap Applications
Packaging Ceramic DC Link Capacitors for Wide-Bandgap Applications
 
IRJET- Modeling and Simulation of Electric Discharge Machine (EDM) and WEDM u...
IRJET- Modeling and Simulation of Electric Discharge Machine (EDM) and WEDM u...IRJET- Modeling and Simulation of Electric Discharge Machine (EDM) and WEDM u...
IRJET- Modeling and Simulation of Electric Discharge Machine (EDM) and WEDM u...
 
Welding performance of a 2 kw continuous wave supermodulated ndyag laser incr...
Welding performance of a 2 kw continuous wave supermodulated ndyag laser incr...Welding performance of a 2 kw continuous wave supermodulated ndyag laser incr...
Welding performance of a 2 kw continuous wave supermodulated ndyag laser incr...
 
SHG Bow-Tie Cavity Design
SHG Bow-Tie Cavity DesignSHG Bow-Tie Cavity Design
SHG Bow-Tie Cavity Design
 
IRJET-Ballistic Performance of Bi-Layer Alumina/Aluminium and Honeycomb Sandw...
IRJET-Ballistic Performance of Bi-Layer Alumina/Aluminium and Honeycomb Sandw...IRJET-Ballistic Performance of Bi-Layer Alumina/Aluminium and Honeycomb Sandw...
IRJET-Ballistic Performance of Bi-Layer Alumina/Aluminium and Honeycomb Sandw...
 
Optimum design of automotive composite drive shaft
Optimum design of automotive composite drive shaftOptimum design of automotive composite drive shaft
Optimum design of automotive composite drive shaft
 
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s)  Reinforced Ep...Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s)  Reinforced Ep...
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...
 
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCsDevelopment of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
 
1-s2.0-S1369800114002303-main
1-s2.0-S1369800114002303-main1-s2.0-S1369800114002303-main
1-s2.0-S1369800114002303-main
 
Paper
PaperPaper
Paper
 

Similar to ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Review of Relay Processes and Design Optimization for Low Voltage Operation
Review of Relay Processes and Design Optimization for Low Voltage OperationReview of Relay Processes and Design Optimization for Low Voltage Operation
Review of Relay Processes and Design Optimization for Low Voltage OperationIRJET Journal
 
52-INTRODUCTION & EFFECTS OF CORONA RING DESIGN BY ELECTRIC FIELD INTENSITY ...
52-INTRODUCTION & EFFECTS OF CORONA RING DESIGN BY  ELECTRIC FIELD INTENSITY ...52-INTRODUCTION & EFFECTS OF CORONA RING DESIGN BY  ELECTRIC FIELD INTENSITY ...
52-INTRODUCTION & EFFECTS OF CORONA RING DESIGN BY ELECTRIC FIELD INTENSITY ...Venkatesh Sampengala
 
Electro-Mechanical Batteries for low earth orbit satellite with hallow cylind...
Electro-Mechanical Batteries for low earth orbit satellite with hallow cylind...Electro-Mechanical Batteries for low earth orbit satellite with hallow cylind...
Electro-Mechanical Batteries for low earth orbit satellite with hallow cylind...elelijjournal
 
Electric arc furnec
Electric arc furnecElectric arc furnec
Electric arc furnechoucin gue
 
Iaetsd structural and electronic properties of doped
Iaetsd structural and electronic properties of dopedIaetsd structural and electronic properties of doped
Iaetsd structural and electronic properties of dopedIaetsd Iaetsd
 
IRJET- Investigation on Electrochemical Machining of Inconel 718 Alloy
IRJET-  	  Investigation on Electrochemical Machining of Inconel 718 AlloyIRJET-  	  Investigation on Electrochemical Machining of Inconel 718 Alloy
IRJET- Investigation on Electrochemical Machining of Inconel 718 AlloyIRJET Journal
 
30167812 short-circuit-ppt
30167812 short-circuit-ppt30167812 short-circuit-ppt
30167812 short-circuit-pptAnto Damanik
 
COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM
COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAMCOUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM
COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAMijiert bestjournal
 
SUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesSUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesRichu Jose Cyriac
 
Electrostatic stress analysis of high voltage cables
Electrostatic stress analysis of high voltage cablesElectrostatic stress analysis of high voltage cables
Electrostatic stress analysis of high voltage cableseSAT Publishing House
 
Electrochemical performance of supercapacitor with glass wool separator under...
Electrochemical performance of supercapacitor with glass wool separator under...Electrochemical performance of supercapacitor with glass wool separator under...
Electrochemical performance of supercapacitor with glass wool separator under...journalBEEI
 
Improving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co AdditionImproving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co AdditionIRJET Journal
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
IRJET- Implementation of Lenz Law for the Application of Electromagnetic ...
IRJET-  	  Implementation of Lenz Law for the Application of Electromagnetic ...IRJET-  	  Implementation of Lenz Law for the Application of Electromagnetic ...
IRJET- Implementation of Lenz Law for the Application of Electromagnetic ...IRJET Journal
 

Similar to ECE535_DesignProj_Report_ABowers&HDhrimaj (1) (20)

Review of Relay Processes and Design Optimization for Low Voltage Operation
Review of Relay Processes and Design Optimization for Low Voltage OperationReview of Relay Processes and Design Optimization for Low Voltage Operation
Review of Relay Processes and Design Optimization for Low Voltage Operation
 
52-INTRODUCTION & EFFECTS OF CORONA RING DESIGN BY ELECTRIC FIELD INTENSITY ...
52-INTRODUCTION & EFFECTS OF CORONA RING DESIGN BY  ELECTRIC FIELD INTENSITY ...52-INTRODUCTION & EFFECTS OF CORONA RING DESIGN BY  ELECTRIC FIELD INTENSITY ...
52-INTRODUCTION & EFFECTS OF CORONA RING DESIGN BY ELECTRIC FIELD INTENSITY ...
 
BME C0G Ceramic DC Link Evaluation
BME C0G Ceramic DC Link EvaluationBME C0G Ceramic DC Link Evaluation
BME C0G Ceramic DC Link Evaluation
 
F010314247
F010314247F010314247
F010314247
 
EFFECT OF ELECTRODE WEAR RATE ON MACHINING OF STAINLESS STEEL – 202 USING COP...
EFFECT OF ELECTRODE WEAR RATE ON MACHINING OF STAINLESS STEEL – 202 USING COP...EFFECT OF ELECTRODE WEAR RATE ON MACHINING OF STAINLESS STEEL – 202 USING COP...
EFFECT OF ELECTRODE WEAR RATE ON MACHINING OF STAINLESS STEEL – 202 USING COP...
 
Electro-Mechanical Batteries for low earth orbit satellite with hallow cylind...
Electro-Mechanical Batteries for low earth orbit satellite with hallow cylind...Electro-Mechanical Batteries for low earth orbit satellite with hallow cylind...
Electro-Mechanical Batteries for low earth orbit satellite with hallow cylind...
 
Electric arc furnec
Electric arc furnecElectric arc furnec
Electric arc furnec
 
Iaetsd structural and electronic properties of doped
Iaetsd structural and electronic properties of dopedIaetsd structural and electronic properties of doped
Iaetsd structural and electronic properties of doped
 
IRJET- Investigation on Electrochemical Machining of Inconel 718 Alloy
IRJET-  	  Investigation on Electrochemical Machining of Inconel 718 AlloyIRJET-  	  Investigation on Electrochemical Machining of Inconel 718 Alloy
IRJET- Investigation on Electrochemical Machining of Inconel 718 Alloy
 
30167812 short-circuit-ppt
30167812 short-circuit-ppt30167812 short-circuit-ppt
30167812 short-circuit-ppt
 
COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM
COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAMCOUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM
COUPLED FIELD ANALYSIS OF PIEZOELECTRIC CANTILEVER BEAM
 
SUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesSUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide Diodes
 
P01052131135
P01052131135P01052131135
P01052131135
 
Electrostatic stress analysis of high voltage cables
Electrostatic stress analysis of high voltage cablesElectrostatic stress analysis of high voltage cables
Electrostatic stress analysis of high voltage cables
 
Electrochemical performance of supercapacitor with glass wool separator under...
Electrochemical performance of supercapacitor with glass wool separator under...Electrochemical performance of supercapacitor with glass wool separator under...
Electrochemical performance of supercapacitor with glass wool separator under...
 
Final Paper
Final PaperFinal Paper
Final Paper
 
Improving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co AdditionImproving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co Addition
 
Comsol2009 Paper
Comsol2009 PaperComsol2009 Paper
Comsol2009 Paper
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
IRJET- Implementation of Lenz Law for the Application of Electromagnetic ...
IRJET-  	  Implementation of Lenz Law for the Application of Electromagnetic ...IRJET-  	  Implementation of Lenz Law for the Application of Electromagnetic ...
IRJET- Implementation of Lenz Law for the Application of Electromagnetic ...
 

ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

  • 1. Anne  Bowers   ECE/MAE  535   July  14,  2014   Helion  Dhrimaj   Summer  2014   NORTH  CAROLINA  STATE  UNIVERSITY   Design  of  Electromechanical  Systems   Semester  Design  Project     Electro-­‐Permanent  Magnet  Clamp         ABSTRACT     Manufacturing  processes  that  involve  ‘material  removal’  (such  as  milling,  drilling,   etc.)  depend  upon  a  secure  attachment  of  the  work  piece  to  the  machine  table  in  order  for   the  work  to  be  completed  safely  and  with  the  desired  precision.    Traditionally  a  mechanical   clamp  would  be  used  to  secure  the  work  piece,  but  this  process  can  become  tedious  and   time  consuming.    In  an  effort  to  improve  upon  these  two  issues,  an  electro-­‐magnetic   solution  was  developed.    An  electromagnet  would  be  turned  on  to  secure  the  work  piece  to   the  table,  due  to  reluctance  forces,  and  then  would  be  switched  off  when  the  process  was   finished.    This  solution  was  able  to  provide  the  desired  faster  and  easier  set  up,  but  now   had  the  additional  risk  of  catastrophic  failure  during  a  power  interruption,  and  was   expensive  to  operate  due  to  high  power  consumption.    The  electro-­‐permanent  magnet   clamp  is  a  new  design  that  strives  to  maintain  the  fast  and  easy  setup  provided  by  the   electromagnetic  clamp,  while  making  use  of  rare  earth  magnets  to  minimize  power   consumption.     INTRODUCTION     This  project  will  focus  on  the  development  of  an  optimized  design  for  an  electro-­‐ permanent  magnet  clamp.    The  basic  design  for  the  electro-­‐permanent  magnet  clamp  is  to   have  two  different  kinds  of  rare  earth  magnets  distributed  within  the  workbench.    NdFeB   magnets  are  used  to  provide  a  strong  flux  density  that  is  undisturbed  regardless  of  being  in   the  on  or  off  state.    AlNiCo  magnets,  which  have  a  lower  coercivity,  are  then  used  to  direct   the  flux  to  either  stay  within  the  workbench,  or  through  the  work  piece.    The  different   states  of  the  clamp,  ‘on’  or  ‘off’,  are  manipulated  by  placing  the  AlNiCo  magnets  within  a   wire  coil  that  can  reverse  the  polarity  of  the  AlNiCo  by  pulsing  current  through  the  coil  in   either  direction.    This  results  in  a  clamp  that  is  either  ‘on’  or  ‘off’  without  the  need  to   constantly  run  electricity  to  sustain  an  electro-­‐magnet.     Figure  1  shows  the  arrangement  and  polarity  of  the  permanent  magnets  within  the   workbench  when  the  clamp  is  in  the  ‘off’  state.    There  are  three  NdFeB  magnets  that  are   arranged  so  that  their  polarities  are  oriented  horizontally.    There  are  two  AlNiCo  magnets   placed  within  coils  of  wire  with  their  polarities  oriented  vertically.    The  arrows  in  the  figure   indicate  the  path  of  magnetic  flux,  and  show  how  all  flux  is  ideally  contained  within  the   workbench.    This  leaves  the  work  piece  free  to  move  around  for  easy  adjustment.         Figure  2  shows  that  when  the  AlNiCo  magnets  are  pulsed  with  sufficient  current   through  their  surrounding  coils,  a  strong  enough  magnetic  field  can  be  generated  to   reverse  their  polarity.    This  reversal  in  polarity  now  directs  flux  through  the  work  piece,   creating  a  reluctance  force  that  holds  the  work  piece  in  place  for  processing.    This  is  the  
  • 2. Anne  Bowers   ECE/MAE  535   July  14,  2014   Helion  Dhrimaj   Summer  2014   clamp  ‘on’  state,  and  it  does  not  require  sustained  electrical  power  to  maintain  the   clamping  force,  making  it  both  safer  and  more  efficient  than  the  electromagnet  clamp.       Figure  1.  Cutaway  of  Electro-­‐Permanent  Magnet  Clamp  in  the  ‘Off”  State           Figure  2.  Cutaway  of  Electro-­‐Permanent  Magnet  Clamp  in  the  ‘On’  State       The  design  optimizations  for  this  clamp  will  focus  on  minimization  of  the  overall   size  and  weight  of  the  electro-­‐permanent  magnet  clamp  (EMPC)  and  required  permanent   magnetic  materials,  NdFeB  and  AlNiCo,  while  still  maintaining  a  minimum  of  500lbs  of   vertical  reluctance  force  while  in  the  ‘on’  state.    Minimization  of  these  two  parameters  will   reduce  the  overall  cost  to  produce  the  clamps.    The  design  will  also  seek  to  maximize  the   vertical  reluctance  force  as  a  secondary  goal  to  minimizing  the  material  costs.     METHODS  AND  MATERIALS     The  materials  that  will  be  used  for  this  clamp  are  AlNiCo  permanent  magnets,   NdFeB  permanent  magnets,  1025  steel,  magnet  wire,  and  a  230V  source.    The  grades  and   volume  of  the  permanent  magnets  will  be  part  of  the  design  optimization.    The  size  of   magnet  wire  to  be  used  will  need  to  be  determined  based  on  the  number  of  turns  required   to  generate  the  magnetic  pulse  that  flips  the  AlNiCo  polarization,  and  the  amount  of  current  
  • 3. Anne  Bowers   ECE/MAE  535   July  14,  2014   Helion  Dhrimaj   Summer  2014   that  can  be  sustained  within  the  wire.    Tables  1-­‐3  summarize  the  material  properties  for   the  available  permanent  magnet  materials  and  1020  Steel.    1020  steel  is  being  considered   because  it  is  the  closest  grade  to  1025  that  is  available  for  simulation.         Table  1.  Summary  of  Properties  of  Available  NdFeB  Materials   Available  NdFeB  Materials   Grade   Remanence  Flux  Density   Coercive   Max.  Energy  Density   Br   HcB   HcJ   (BH)max   mT   G   kA/m   Oe   kA/m   mT   G   kA/m   N10[3]   690   6,900   424   5,300   760   9,500   90-­‐100   7.3-­‐8.1   N38[1]   1,220   12,200   899   11,300   955   12,000   287   36   N40[1]   1,250   12,500   907   11,400   955   12,000   302   38   N42[1]   1,280   12,800   915   11,500   955   12,000   318   40   N52[1]   1,430   14,300   796   10,000   876   11,000   398   50     Table  2.  Summary  of  Properties  of  Available  AlNiCo  Materials   Available  AlNiCo  Materials[4]   Grade   Remanence   Flux  Density   Coercive   Max.  Energy   Density   Operating   Temp   MMPA   Br   HcB   HcJ   (BH)max   Tw  Max   kGs   mT   kOe   kA/m   kOe   kA/m   MGOe   kJ/m3   C   LNG34   11   1100   0.63   50   0.65   52   4.25   34   525   AlNiCo5   LNG37   11.8   1180   0.61   49   0.64   51   4.63   37   525   AlNiCo5   LNG40   12   1200   0.63   50   0.65   52   5   40   525   AlNiCo5   LNG44   12.5   1250   0.65   52   0.68   54   5.5   44   525   AlNiCo5   LNG52   13   1300   0.7   56   0.73   58   6.5   52   525   AlNiCo   5DG   LNG60   13.5   1350   0.73   58   0.75   60   7.5   60   525   AlNiCo   5-­‐7     Table  3.  Summary  of  Properties  of  1020  Steel   AISI  1020  Steel  Characteristics   Density   0.2839  lb/in3   Tensile  Strength   63800  psi   Relative  Permeability  (0.3440  T)[2]   1496   Relative  Permeability  (0.9600  T)[2]   444   Relative  Permeability    (1.4700  T)[2]   97   Relative  Permeability  (1.6150  T)[2]   55       The  data  in  Table  1  shows  that  the  increase  in  grade  for  NdFeB  corresponds  to  an   increase  in  BHmax,  the  maximum  energy  product.    It  is  expected  that  higher  grades  of  NdFeB   will  require  less  material  to  make  a  clamp  with  sufficient  holding  force,  but  depending  on  
  • 4. Anne  Bowers   ECE/MAE  535   July  14,  2014   Helion  Dhrimaj   Summer  2014   the  market  value  for  different  grades,  the  highest  and  lowest  grade  may  not  prove  to  be  the   most  economical  choice.    The  data  in  Table  2  indicates  that  the  lower  grades  of  AlNiCo  have   a  lower  coercivity,  and  so  it  should  take  less  current  in  the  coils  to  flip  the  magnet  poles   making  it  a  more  efficient  clamp  to  operate.    The  lower  grades  will  also  require  more   material  because  their  maximum  energy  density  is  lower.         The  magnetic  flux  that  is  responsible  for  generating  the  holding  force  while  the   clamp  is  in  the  ‘on’  state  must  also  be  fully  contained  in  the  clamp  during  the  ‘off’  state  in   order  to  make  it  easy  to  position  and  adjust  the  work  piece  before  clamping  it  down  for   work.    In  order  to  prevent  any  flux  from  travelling  through  the  work  piece  while  the  clamp   is  in  the  ‘off’  state,  the  flux  supplied  by  the  AlNiCos  must  equal  the  flux  supplied  by  NdFeBs.     This  can  be  calculated  using  equation  1,  and  confirmed  by  simulation  using  FEMM.     𝐵!"#$%& ∗ 𝐴!"#$%& = 𝐵!"#$% ∗ 𝐴!"#$%                 Eq.  (1)       The  data  in  Table  3  includes  the  relative  permittivity  values  for  steel  at  different  flux   density  values.    This  is  important  because  it  indicates  when  the  steel  in  the  clamp  and  work   piece  are  reaching  their  saturation  point.    If  the  steel  becomes  saturated  then  energy  is   being  wasted,  and  a  lower  grade  of  magnet  that  supplies  less  flux  density  will  be  able  to   achieve  the  same  holding  force,  presumably  for  less  cost.  Table  3  shows  that  steel  becomes   saturated  between  1.4  T  and  1.6  T.    Any  designs  that  result  in  points  of  flux  density  greater   than  this  range  should  not  be  considered.      The  last  parameter  is  the  ability  to  switch  the  clamp  ‘on’  and  ‘off’  using  the  coil   bobbins.    The  minimum  current  pulse  required  in  the  coil  bobbins  can  be  predicted  using   Ampere’s  Law.    Ampere’s  Law  relates  the  current  enclosed  by  a  closed  contour  integral  to   the  magnetic  field.    Equations  2,  3,  and  4  show  Ampere’s  Law  and  how  it  will  be  used  to   determine  the  minimum  current  for  turning  the  clamp  on  and  off.     𝐻Ÿ 𝑑𝑙 ! ! = 𝐼!"#!           Eq.  (2)     𝐻 ∗ 𝐿 = 𝑁 ∗ 𝐼               Eq.  (3)     !∗! ! = 𝑁𝐼 → 𝐼 = !∗! !∗!             Eq.  (4)         Given  Equation  4  we  can  determine  the  necessary  current  to  turn  the  clamp  on  and   off.    This  relationship  shows  that  the  necessary  current  is  directly  related  to  the  strength  of   the  magnetic  flux  of  the  AlNiCo  magnets,  and  inversely  proportional  to  the  number  of  turns   wire.    The  length  of  wire  will  be  limited  by  the  coil  bobbin  dimensions  and  available  space,   and  the  permeability  will  be  determined  by  the  grade  of  AlNiCo  chosen  in  the  final  design.     The  resistance  of  the  wire  is  also  a  factor  in  determining  how  much  current  can  be  pulsed   with  a  230V  source.    The  physical  properties  of  several  common  gauges  of  magnet  wire  are   summarized  in  Table  4.              
  • 5. Anne  Bowers   ECE/MAE  535   July  14,  2014   Helion  Dhrimaj   Summer  2014   Table  4.  Physical  Properties  of  Different  Magnet  Wire  Sizes   Magnet  Wire  Specifications   Wire  Gauge   (AWG)   Resistance   (Ω/1000ft)   Total   Resistance  for   97  Turns  (Ω)   Maximum   Current    w/   230  V  Source   Cross-­‐sectional  Area   for  97  Turns  (in2 )   24   25.67   2.27   101.3   0.031   22   16.14   1.43   160.8   0.049   20   10.15   0.897   256.4   0.078   18   6.385   0.565   407.1   0.124   16   4.016   0.355   647.9   0.197       Using  the  FEMM  software  introduced  in  the  course,  and  the  provided  general  layout,   a  model  was  constructed.  Figure  3  shows  this  layout,  including  the  materials  that  were   used  in  the  simulation.    1020  steel  was  used  for  the  simulation  because  it  was  the  closest   available  material  in  the  material  library.    The  air  gap  is  0.1  mm  wide,  and  the  model  shown   has  a  depth  of  2.6cm,  which  is  midway  through  the  clamp.    All  forces  calculated  by  FEMM   will  need  to  be  doubled  to  account  for  the  other  half  of  the  clamp.         Figure  3.  Cross-­‐sectional  layout  of  Electro-­‐Permanent  Magnet  Clamp     RESULTS     The  initial  magnetics  simulation  results,  using  NdFeB  37  and  AlNiCo  5  were  able  to   achieve  an  attractive  force  between  the  work  piece  and  the  body  of  6034  N,  which  is   roughly  1356  lbs.    This  design  meets  the  minimum  force  specifications,  but  can  be   improved.    The  magnetic  flux  was  concentrated  in  the  two  poles  of  the  workbench  at  nearly   2  Tesla.    Given  that  steel  reaches  saturation  between  1.4  and  1.6  Tesla[2],  energy  was  being   wasted  in  this  saturated  condition.           The  clamp  was  redesigned  to  help  minimize  this  inefficiency  in  each  different   magnet  grade  combination,  which  is  summarized  in  Table  6.    The  minimum  clamp   dimensions  that  were  found  to  ensure  a  reasonable  path  for  flux  without  unnecessary  bulk   are  summarized  in  Table  5.    While  the  overall  size  of  the  clamp  is  not  large  in  dimensions,  it   is  ultimately  a  heavy  piece  of  equipment,  totaling  around  62  pounds.    The  varying  height  of   the  AlNiCo  magnets  for  each  design  made  it  difficult  to  predict  exactly  how  much  steel   would  be  in  the  pole  without  knowing  the  final  client  design  choice,  so  the  total  weight  is  a   conservative  maximum  based  on  the  presence  of  no  AlNiCo.    Any  final  clamp  will  have   slightly  less  steel.  
  • 6. Anne  Bowers   ECE/MAE  535   July  14,  2014   Helion  Dhrimaj   Summer  2014     Table  5.  Clamp  Steel  Weight   Clamp  Steel  Weight  Based  1025  Steel  Density   Clamp  Piece   Volume  (mm3)   Volume  (in3)   Density  (lb/in3)    Weight  (lb)   Pole*   245000   14.951   0.2839   4.24   Base   1485000   90.620   0.2839   25.73   Sides   1862000   113.63   0.2839   32.26   Total   3592000   219.201   -­‐   62.23     Table  6.  Summary  of  Minimum  Required  Dimensions  and  Cost  for  Different  Magnet  Grade   Combinations   Magnet   Combination     Force  in   ON   (N)/(lbs)   Force  in     OFF   (N)/(lbs)   Max.  Satu-­‐   ration   (T)   NdFeB   Dimensi ons   (mm)   AlNiCo   Dimension s   (mm)   NdFeB     Price   ($)   AlNiCo   Price   ($)   I  (A)   NdFeB10[8-­‐ 11] /   AlNiCo  5[6]   4552.99/ 1023     ~0/0   1.41   (60  x  50   x  36)     (47  x  46  x   17)     324   103.21   66.6   NdFeB10[8-­‐ 11] /   AlNiCo  5[6]   6432.22/ 1446     ~0/0   1.71   (60  x  50   x  44)     (47  x  46  x   45)   396   274.99   188. 9   NdFeB37[8] /   AlNiCo6[5][6][7]   2422.7/   544   34/7.6   1.293   (60  x  50   x  17)   (47  x  46  x   10)   699.50   80.57   10   NdFeB37[8] /   AlNiCo6[5][6][7]   6773.06/ 1522   34/7.6   1.747   (60  x  50   x  17)   (47  x  46  x   30)   699.50   241.72   100   NdFeB40[9] /   AlNiCo6[5][6][7]   2676.94/ 601   36.38/   8.1   1.36   (60  x  50   x  17)   (47  x  46  x   10)   141.984   80.57   10   NdFeB40[9] /   AlNiCo6[5][6][7]   6853.24/ 1540   36.37/   8.1   1.814   (60  x  50   x  17)   (47  x  46  x   30)   141.98   241.72   100   NdFeB52[10] /   AlNiCo6[5][6][7]   2488.2/   559   32.157/ 7.2   1.374   (60  x  50   x  17)   (47  x  46  x   10)   199.18   80.57   10   NdFeB52[10] /   AlNiCo6[5][6][7]   6712/   1508   36.637/ 8.2   1.84   (60  x  50   x  17)   (47  x  46  x   30)   199.18   241.72   100   NdFeB37[8] /   AlNiCo8[5]   2378.9/   535   47.178/ 10.6   1.351   (60  x  50   x  17)   (47  x  46  x   12.5)   690.50   75.72   24   NdFeB37[8] /   AlNiCo8[5]   6669.97/ 1500   44.62/   10.0   1.813   (60  x  50   x  17)   (47  x  46  x   32.5)   690.50   196.89   150   NdFeB40[9] /   AlNiCo8[5]   2463.62/   554   57.72/   13.0   1.366   (60  x  50   x  17)   (47  x  46  x   12.5)   141.984   75.72   24   NdFeB40[9] /   AlNiCo8[5]   6756.47/ 1519   54.659/ 12.3   1.837   (60  x  50   x  17)   (47  x  46  x   32.5)   141.984   196.89   150   NdFeB52[10] /   AlNiCo8[5]   2565.4/   577   127/   28.6   1.307   (60  x  50   x  17)   (47  x  46  x   12.5)   199.18   75.72   22   NdFeB52[10] /   AlNiCo8[5]   6794.49/ 1527   124.4/2 8.0   1.839   (60  x  50   x  17)   (47  x  46  x   35)   199.18   212.04   150  
  • 7. Anne  Bowers   ECE/MAE  535   July  14,  2014   Helion  Dhrimaj   Summer  2014     Figures  4-­‐6  show  results  of  simulations  made  with  NdFeB  10  and  AlNiCo  5  magnets.     Simulations  of  all  other  magnet  combinations  yielded  similar  results.    Figure  4  shows  the   clamp  in  the  ‘on’  position.    The  maximum  flux  density  is  concentrated  in  the  poles  and  the   work  piece  but  does  not  exceed  1.41T  so  minimal  amounts  of  energy  are  being  wasted.     Figure  5  shows  the  same  clamp  in  the  off  state  with  a  measured  0.05lbs  of  off  force.    That   amount  of  force  should  be  unnoticeable  to  anyone  responsible  for  positioning  the  work   piece.    The  last  figure,  figure  6,  shows  the  clamp  in  the  midst  of  switching.    The  lack  of  flux   lines  through  the  AlNiCo  magnets  and  coils  shows  that  the  current  in  the  coil  is  at  least   strong  enough  to  balance  the  AlNiCo  flux.    Any  current  increase  past  that  point  will  cause   the  AlNiCo  magnet  poles  to  flip.       Figure  4.  Clamp  with  Minimum  PM  Materials  N10  and  AlNiCo  5  in  On  Position  with  2046lbs   of  holding  force       Figure  5.  Clamp  with  Minimum  PM  Materials  N10  and  AlNiCo  5  in  Off  Position  with  -­‐0.05lbs   of  Holding  Force    
  • 8. Anne  Bowers   ECE/MAE  535   July  14,  2014   Helion  Dhrimaj   Summer  2014     Figure  6.  Clamp  with  66.6  A  of  Current  During  Switching  from  On  to  Off     CONCLUSIONS       The  NdFeb10/AlNiCo5  combination  achieved  the  required  force  with  a  force  of   nearly  zero  in  the  “OFF”  state.  For  our  clamp  design,  this  proved  unobtainable  with  the   higher-­‐grade  magnets.  As  evident  in  the  table  above,  all  of  the  higher  grade  magnetic   combinations  experienced  some  force  in  the  air  gap  during  the  “OFF”  state.     With  the  NdFeB37,  40,  and  50,  the  ideal  dimensions  ranged  from  (60  mm  x  50mm  x   15mm)  to  (60  mm  x  50mm  x  22.5  mm).  This  NdFeB37/40/50  dimensional  range  supplied   enough  magnetic  flux  density  to  achieve  500  lbs.  and  1500  lbs.  of  force.  At  the  same  time  it   minimized  the  magnetic  saturation  as  well  as  the  force  in  the  OFF  state.  For  the  sake  of   time,  we  chose  to  leave  the  NdFeB  magnets  at  a  constant  (60mm  x  50mm  x  17mm).  The   only  variable  left  to  modify  was  the  AlNiCo  dimension.  According  to  the  reluctance  force  in   the  “ON”  state,  the  AlNiCo5  length  ranged  from  (17  mm  -­‐  45  mm),  the  AlNiCo6  length   ranged  from  (10  mm-­‐  30  mm),  and  the  AlNiCo8  length  ranged  from  (12.5mm  to  35  mm).   Combinations  of  higher  magnetic  grades,  NdFeB37  and  above,  as  well  as  AlNiCo6  and   above,  provided  sufficient  force  for  the  clamp.  On  the  negative  side,  these  aforementioned   magnets  experienced  high  levels  of  saturation  when  designed  for  the  1500  lbs.  of  force.   Furthermore,  an  air  gap  force  was  measured  in  the  FEMM  analysis  even  in  the  OFF  state.   This  is  more  substantial  in  the  NdFeB52/AlNiCo8  combination,  where  we  measured  a  force   close  to  130  N  in  “OFF”  state.     The  maximum  cross-­‐sectional  area  that  is  available  for  the  coil  is  0.558in2  so  the   clamp  dimensions  would  accommodate  any  of  the  wire  sizes  in  table  4.    The  larger  size   wire  would  be  more  desirable  for  the  final  product  because  it  is  better  able  to  handle  the   higher  current  pulses  and  the  heat  that  is  generated  during  the  pulse.       Overall  it  would  be  difficult  to  choose  an  ideal  magnet  design.  The   NdFeB10/AlNiCo5  combination  has  a  high  price  due  to  the  amount  of  material  being  used.   At  the  same  time  it  experiences  almost  no  force  in  the  “Off”  state  and  relatively  low   saturation  levels,  even  for  the  1500  lbs.  force  requirement.  Alternatively,  the  higher  grades   of  magnet  tend  to  require  less  overall  material.  This  equates  to  slightly  lower  costs  but  at   the  same  time  higher  levels  of  saturation  result,  and  a  force  is  present  in  the  “Off”  state.   Considering  the  alternatives  we  were  able  to  develop,  and  our  ability  to    apply  FEMM  as  a   tool  in  the  design  process,  this  project  has  been  a  good  opportunity  to  demonstrate  the   material  we  have  learned  throughout  the  semester.  
  • 9. Anne  Bowers   ECE/MAE  535   July  14,  2014   Helion  Dhrimaj   Summer  2014   REFERENCES     [1]  NdFeB  Specialists  E-­‐Magnets,  Berkhamsted,  Herdforshire,  UK  (2014).  “Grades  of   Neodymium”  (Online)  Accessed  29  July,  2014.  http://www.ndfeb-­‐ info.com/neodymium_grades.aspx     [2]  Field  Precision  LLC.,  Albuquerque,  New  Mexico,  USA  (2014).  “Saturation  Curves  for  Soft   Magnetic  Materials”  (Online)  Accessed  29  July,  2014.   http://www.fieldp.com/magneticproperties.html     [3]  Magnetic  Materials  &  Components,  Hauppage,  New  York,  USA  (2014).  “Compression   Bonded  Magnets”  (Online)  Accessed  29  July,  2014.   http://www.mmcmagnetics.com/ourproducts/Bonded/Compression_Bonded.htm     [4]  X-­‐Mag,  Inc.,  Hangzhou,  Zhejiang,  China.  (2014).  "Magnetic  Characteristics  of  AlNiCo   Magnets".       [5]  Arnold  Magnetic  Technologies  Corporation,  Rochester,  New  York,  USA  (2014).  “Alnico  8   Magnets”  (Online)  Accessed  29  July,  2014.  http://buyonline.arnoldmagnetics.com/p-­‐11-­‐ alnico-­‐8-­‐magnets.aspx     [6]  Arnold  Magnetic  Technologies  Corporation,  Rochester,  New  York,  USA  (2014).  “Alnico  5   Magnets”  (Online)  Accessed  29  July,  2014.  http://buyonline.arnoldmagnetics.com/p-­‐12-­‐ alnico-­‐4-­‐5-­‐magnets.aspx     [7]  Total  Magnetic  Solutions,  Culver  City,  California,  USA  (2014).  “Properties  of  Alnico   Magnets”  (Online)  Accessed  29  July,  2014.   http://www.magnetsales.com/alnico/Alprops.htm     [8]  Magnet  Shop,  Culver  City,  California,  USA  (2014).  “Neodymium  Block  Magnets”  (Online)   Accessed  29  July,  2014.    http://magnetsales.thomasnet.com/viewitems/block-­‐ magnets/large-­‐neodymium-­‐rectangle-­‐magnets?&forward=1     [9]  CMS  Magnetics,  Garland,  Texas,  USA  (2014).  “Neodymium  Magnets”  (Online)  Accessed   29  July,  2014.    http://www.magnet4sale.com/10-­‐pc-­‐n40-­‐neodymium-­‐magnets-­‐4-­‐10x2-­‐ 10x1-­‐10-­‐ndfeb-­‐rare-­‐earth-­‐magnets/     [10]  K  &  J  Magnetics,  Inc.,  Pipersville,  Pennsylvania,  USA  (2014).  “Neodymium  Block   Magnets”  (Online)  Accessed  29  July,  2014.   http://www.kjmagnetics.com/products.asp?cat=11     [11]  Integrated  Magnetics,  Culver  City,  California,  USA  (2014).  “Neodymium  Iron  Boron   Magnets-­‐  General  Information”  (Online)  Accessed  29  July,  2014   http://www.intemag.com/NdFeB.html