0
Joe Parry	
Graph Visualisation
Unpicking the Knot
What does data look like?
Data is invisible
To be seen, data must be
encoded
How?
Quan%ta%ve	
   Ordinal	
   Nominal	
  
More Accurate
Less Accurate
Quantitative Ordinal Nominal
Position Position Position...
Graph Encoding
Matrix
Edge bundling
Hive plots	
Hive Plots
Classic node-link diagram
Demos!
Design principles for effective
graph visualisation
1. Start with the Question
2. Meaningful Visual Encoding
3. Interaction
4. Visual Filters
5. Aggregation
6. Use a great tool ;-)
All demos made with	
	
joe@keylines.com
II-SDV 2014 Network Visualisation - unpicking the knot ( Cambridge Intelligence, UK)
II-SDV 2014 Network Visualisation - unpicking the knot ( Cambridge Intelligence, UK)
II-SDV 2014 Network Visualisation - unpicking the knot ( Cambridge Intelligence, UK)
II-SDV 2014 Network Visualisation - unpicking the knot ( Cambridge Intelligence, UK)
II-SDV 2014 Network Visualisation - unpicking the knot ( Cambridge Intelligence, UK)
Upcoming SlideShare
Loading in...5
×

II-SDV 2014 Network Visualisation - unpicking the knot ( Cambridge Intelligence, UK)

489

Published on

Published in: Software, Technology
1 Comment
1 Like
Statistics
Notes
  • BioFabric (www.BioFabric.org) is another way to visualize networks; it represents nodes not as points, but as lines, and thus avoids the hairball completely! Demo at: http://www.biofabric.org/gallery/pages/SuperQuickBioFabric.html
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
489
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
10
Comments
1
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "II-SDV 2014 Network Visualisation - unpicking the knot ( Cambridge Intelligence, UK)"

  1. 1. Joe Parry Graph Visualisation Unpicking the Knot
  2. 2. What does data look like?
  3. 3. Data is invisible
  4. 4. To be seen, data must be encoded
  5. 5. How?
  6. 6. Quan%ta%ve   Ordinal   Nominal   More Accurate Less Accurate Quantitative Ordinal Nominal Position Position Position Length Density Hue Angle Saturation Density Slope Hue Saturation Area Length Shape Density Angle Length Saturation Slope Angle Hue Area Slope Shape Shape Area Visual encoding by data type
  7. 7. Graph Encoding
  8. 8. Matrix
  9. 9. Edge bundling
  10. 10. Hive plots Hive Plots
  11. 11. Classic node-link diagram
  12. 12. Demos!
  13. 13. Design principles for effective graph visualisation
  14. 14. 1. Start with the Question
  15. 15. 2. Meaningful Visual Encoding
  16. 16. 3. Interaction
  17. 17. 4. Visual Filters
  18. 18. 5. Aggregation
  19. 19. 6. Use a great tool ;-)
  20. 20. All demos made with joe@keylines.com
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×