• Like

Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Uploaded on

 

More in: Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
740
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
39
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. WELCOME HAR IKRIHNAN. July 11, 2006 Presented by Harikrishnan.P.V S7 CSE Reg no: VIAHECS016
  • 2. IEEE 802.11n HAR IKRIHNAN. July 11, 2006
  • 3. HAR IKRIHNAN. July 11, 2006
    • In January 2004 IEEE announced that it had formed a new 802.11 TaskGroup (TGn) to develop a new amendment to the 802.11 standard for local-area wireless networks. The real data throughput is estimated to reach a theoretical 540 Mbit/s and should be up to 40 times faster than 802.11b, and near 10 times faster than 802.11a or 802.11g.
    • There were two competing proposals of the 802.11n standard: WWiSE ( W orld- Wi de S pectrum E fficiency), backed by companies including Broadcom , and TGn Sync backed by Intel and Philips .
    History HISTORY
  • 4. HARKRIHNAN. July 11, 2006
    • 802.11n builds upon previous 802.11 standards by adding MIMO (multiple-input multiple-output) and orthogonal frequency-division multiplexing (OFDM). MIMO uses multiple transmitter and receiver antennas to allow for increased data throughput through spatial multiplexing and increased range by exploiting the spatial diversity.
    • The Enhanced Wireless Consortium (EWC) was formed to help accelerate the IEEE 802.11n development process and promote a technology specification for interoperability of next-generation wireless local area networking (WLAN) products
  • 5. 802.11 WLAN Standards 802.11b 802.11a 802.11g 802.11n Standard Approved Sept. 1999 Sept. 1999 June 2003 2006 Available Bandwidth 83.5 MHz 580 MHz 83.5 MHz 83.5/580 MHz Frequency Band of Operation 2.4 GHz 5 GHz 2.4 GHz 2.4/5 GHz Data Rate per Channel 1 – 11 Mbps 6 – 54 Mbps 1 – 54 Mbps 1 – 600 Mbps Modulation Type DSSS, CCK OFDM DSSS, CCK, OFDM DSSS, CCK, OFDM, MIMO
  • 6. 802.11n
    • Frequency most likely the 5GHz range, meaning possible compatibility with 802.11a
    • Throughput to match highest possible data rates- (raise the effective throughput of WLANs to at least 100M bps)
    • Defining standardized modifications to the 802.11 physical layers and MAC layers, which will improve not just data rates but also actual data throughput
  • 7. 802.11n PHY Improvements 1. Improved coding and modulation 2. Backward compatibility 3. Number of antennas 4. MIMO and Spatial Multiplexing
  • 8. MIMO Wireless Systems
    • Multiple Input Multiple Output (MIMO) systems with multiple parallel radios improve the following:
      • Outages reduced by using information from multiple antennas
      • Transmit power can be increased via multiple power amplifiers
      • Higher throughputs possible
    Radio D S P Bits TX Radio Radio D S P Bits RX Radio channel
  • 9. MIMO
    • The next generation WLAN uses MIMO technology
      • Beamforming MIMO technology
        • Extends range of existing data rates by transmit and receive beamforming
      • Spatial-multiplexing MIMO technology
        • Increases data rates by transmitting parallel data streams
    • MIMO allows system designers to leverage Moore’s law to deliver higher performance wireless systems
  • 10. HAR IKRIHNAN. July 11, 2006 Operating Modes The PHY will operate in one of 3 modes Legacy Mode – in this mode packets are transmitted in the legacy 802.11a/g format. Mixed Mode – in this mode packets are transmitted with a preamble compatible with the legacy 802.11a/g. The rest of the packet has a new format . In this mode the receiver shall be able to decode both the Mixed Mode packets and legacy packets.
  • 11. HAR IKRIHNAN. July 11, 2006 Operating Modes–(cont) Green Field – in this mode high throughput packets are transmitted without a legacy compatible part. This mode is optional. In this mode the receiver shall be able to decode both Green Field mode packets, Mixed Mode packets and legacy format packets.
  • 12. HAR IKRIHNAN. July 11, 2006 Benefits of 802.11n : 1. Irresistible Performance and Range 2. Compelling Capacity 3. No Network Left Behind
  • 13. HAR IKRIHNAN. July 11, 2006 Challenges of 802.11n : 1. Enterprise Deployment Challenges 2. New Coverage Patterns 3. Variety of Client Devices 4. Consumer and Small Business Already Moving
  • 14. Conclusion It ’ s All Good 802.11n will substantially increase the performance and ubiquitous wireless access of laptops, desktops, smart phones and entertainment devices over the next several years. Without cost increase, just like the migration from 802.11 cousin 10 Mbps Ethernet to gigabit Ethernet, 802.11n will first appear in client devices and begin to be pervasively deployed in enterprises, homes and eventually metro networks. While there will be teething problems with this new technology, there is no doubt of its pervasive and inevitable deployment.
  • 15. THANK YOU…….