UNIVERSITI PENDIDKAN SULTAN IDRIS           SUBTOPIC 3          QUANTIFIERS                   PREPARED BY : MOHAMAD AL FAI...
IntroductionA proposition is a statement; either “true” or “false”.The statement                P : “n” is odd integer.The...
Topic1   • Quantifiers2   • Universal Quantification    • Counterexample3    • Existential Quantification45   • De Morgan’...
1. QuantifiersDefinition: Let P (x) be a statement involving the variable x and let D be a set.  We called P a proportiona...
Example 1Let P(n) be the statement             n is an odd integerFor example: If n = 1, we obtain the proposition.       ...
2. Universal Quantification Definition:  Let P be a propositional function with the domain of  discourse D. The universal ...
3. CounterexampleDefinition : A counterexample is an example chosen to show that a universal statement is FALSE. To verify...
Example 2
4. Existential Quantification Let P be a proportional function with the domain of discourse D. The existential quantificat...
Example 3
5. De Morgan’s Law For Logic  Theorem:              (∀x, P (x)) ≡ (∃x, (P(x))              (∃x, (P(x)) ≡ (∀x, P (x))  The ...
Example 4
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Slide subtopic 3
Upcoming SlideShare
Loading in...5
×

Slide subtopic 3

254

Published on

Published in: Technology, News & Politics
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
254
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Slide subtopic 3

  1. 1. UNIVERSITI PENDIDKAN SULTAN IDRIS SUBTOPIC 3 QUANTIFIERS PREPARED BY : MOHAMAD AL FAIZ BIN SELAMAT
  2. 2. IntroductionA proposition is a statement; either “true” or “false”.The statement P : “n” is odd integer.The statement P is not proposition because whether p istrue or false depends on the value of n
  3. 3. Topic1 • Quantifiers2 • Universal Quantification • Counterexample3 • Existential Quantification45 • De Morgan’s Law For Logic
  4. 4. 1. QuantifiersDefinition: Let P (x) be a statement involving the variable x and let D be a set. We called P a proportional function or predicate (with respect to D ) , if for each x ∈ D , P (x) is a proposition. We called D the domain of discourse of P.
  5. 5. Example 1Let P(n) be the statement n is an odd integerFor example: If n = 1, we obtain the proposition. P (1): 1 is an odd integer (Which is true) If n = 2, we obtain the proposition P (2): 2 is an odd integer (Which is false)
  6. 6. 2. Universal Quantification Definition: Let P be a propositional function with the domain of discourse D. The universal quantification of P (x) is the statement. “For all values of x, P is true.” ∀x, P (x) Similar expressions: For each… For every… For any…
  7. 7. 3. CounterexampleDefinition : A counterexample is an example chosen to show that a universal statement is FALSE. To verify : ∀x, P (x) is true ∀x, P (x) is false
  8. 8. Example 2
  9. 9. 4. Existential Quantification Let P be a proportional function with the domain of discourse D. The existential quantification of P (x) is the statement. “there exist a value of x for which P (x) is true. ∃x, P(x) Similar expressions : - There is some… - There exist…
  10. 10. Example 3
  11. 11. 5. De Morgan’s Law For Logic Theorem: (∀x, P (x)) ≡ (∃x, (P(x)) (∃x, (P(x)) ≡ (∀x, P (x)) The statement “The sum of any two positive real numbers is positive”. ∀x > 0∀y > 0
  12. 12. Example 4
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×