Summary of HDF-EOS5 Files, Data Model and File Format
 

Summary of HDF-EOS5 Files, Data Model and File Format

on

  • 131 views

This slide explains what HDF-EOS5 file is and how it is organized.

This slide explains what HDF-EOS5 file is and how it is organized.

Statistics

Views

Total Views
131
Views on SlideShare
112
Embed Views
19

Actions

Likes
0
Downloads
0
Comments
0

3 Embeds 19

http://localhost 14
http://hdfeos.org 3
http://www.slideee.com 2

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Summary of HDF-EOS5 Files, Data Model and File Format Summary of HDF-EOS5 Files, Data Model and File Format Presentation Transcript

  • Summary of HDF-EOS5 Files, Data Model and File Format Abe Taaheri, Raytheon IIS HDF & HDF-EOS Workshop XI November 2007
  • General HDF-EOS5 File Structure • HDF-EOS5 file is any valid HDF5 file that contains: – a family of global attributes called: coremetadata.X Optional data objects:  family of global attributes called: archivemetadata.X  any number of Swath, Grid, Point, ZA, and Profile data structures.  another family of global attributes: StructMetadata.X • The global attributes provide information on the structure of HDF-EOS5 file or information on the data granule that file contains. • Other optional user-added global attributes such as “PGEVersion”, “OrbitNumber”, etc. are written as HDF5 attributes into a group called “FILE ATTRIBUTES” Page 2
  • General HDF-EOS5 File Structure • coremetadata.X Used to populate searchable database tables within the ECS archives. Data users use this information to locate particular HDF-EOS5 data granules. • archivemetadata.X Represents information that, by definition, will not be searchable. Contains whatever information the file creator considers useful to be in the file, but which will not be directly accessible by ECS databases. S • StructMetadata.X Describes contents and structure of HDF-EOS file. e.g. dimensions, compression methods, geolocation, projection information, etc. that are associated with the data itself. Page 3
  • General HDF-EOS5 File Structure • An HDF-EOS5 file – can contain any number of Grid, Point, Swath, Zonal Average, and Profile data structures – has no size limits.  A file containing 1000's of objects could cause program execution slow-downs – can be hybrid, containing plain HDF5 objects for special purposes.  HDF5 objects must be accessed by the HDF5 library and not by HDF-EOS5 extensions.  will require more knowledge of file contents on the part of an applications developer or data user. Page 4
  • Swath Structure • Data which is organized by time, or other track parameter. • Spacing can be irregular. • Structure – Geolocation information stored explicitly in Geolocation Field (2-D array) – Data stored in 2-D or 3-D arrays – Time stored in 1-D or 2-D array, – Geolocation/science data connected by structural metadata Page 5
  • Swath Structure P In st ru m en t Instrument Profiles instrument takes a series of scans perpendicular to the ground track of the satellite as it moves along that ground track at h • For a typical satellite swath, an Along Track • Or a sensor measures a vertical profile, instead of scanning across the ground track Page 6
  • Swath Structure “SWATHS” group • Swath_X groups are created when swaths are created •Data/Geo fields’ parent group are created when fields are defined. • Swath attributes are set as Object Attributes. • Attributes for Data, Profile, or Gelocation Fields groups are set as Group Attributes • Dataset related attributes set for each data field or geolocation field are called Local Attributes. They may contain attributes such as fillvalue, units, etc. Object Attribute <SwathName>: <AttrName> “Swath_1” Group Attribute <DataFields>: <AttrName> Data Fields Local Attribute <FieldName>: <AttrName> Data Field.1 Data Field.n “Swath_N” Profile Fields Profile Field.1 Profile Field.n Geolocation Fields Longitude Time Latitude Colatitude HDF5 Group HDF5 Attribute HDF5 Dataset Each Data Field object can have Attributes and/or Dimension Scales Page 7
  • Swath Structure • Geolocation Fields − Geolocation fields allow the Swath to be accurately tied to particular points on the Earth’s surface. − At least a time field (“Time”) or a latitude/longitude field pair (“Latitude” and “Longitude”). “Colatitude” may be substituted for “Latitude.” − Fields must be either one- or two-dimensional − The “Time” field is always in TAI format (International Atomic Time) Field Name Data Type Format Longitude float32 or float64 DD*, range [-180.0, 180.0] Latitude float32 or float64 DD*, range [-90.0, 90.0] Colatitude float32 or float64 DD*, range [0.0, 180.0] Time float64 TAI93 [seconds until(-) / since(+) midnight, 1/1/93] * DD = Decimal Degree Page 8
  • Swath Structure • Data Fields − Fields may have up to 8 dimensions. − For all multi-dimensional fields in scan- or profile-oriented Swaths, the dimension representing the “along track” dimension must precede the dimension representing the scan or profile dimension(s) (in C-order). ( e.g. “Bands, DataTrack, DataXtrack” ) − Compression is selectable at the field level within a Swath. All HDF5supported compression methods are available through the HDF-EOS5 library. The compression method is stored within the file. Subsequent use of the library will un-compress the file. As in HDF5 the data needs to be chunked before the compression is applied. − Field names: * may be up to 64 characters in length. * Any character can be used with the exception of, ",", ";", " and "/". * are case sensitive. * must be unique within a particular Swath structure. Page 9
  • Compression Codes Compression Code HDFE_COMP_NONE Value Explanation 0 No Compression 1 Run Length Encoding Compression (not supported) HDFE_COMP_NBIT 2 NBIT Compression HDFE_COMP_SKPHUFF 3 Skipping Huffman (not supported) HDFE_COMP_DEFLATE 4 gzip Compression 5 szip Compression, Compression exactly as in hardware 6 szip Compression, allowing k split = 13 Compression 7 szip Compression, entropy coding method 8 szip Compression, nearest neighbor coding method 9 szip Compression, allowing k split = 13 Compression, or entropy coding method HDFE_COMP_RLE HDFE_COMP_SZIP_CHIP HDFE_COMP_SZIP_K13 HDFE_COMP_SZIP_EC HDFE_COMP_SZIP_NN HDFE_COMP_SZIP_K13orEC For Compression the data storage must be CHUNKED first Page 10
  • Compression Codes Compression Code Value HDFE_COMP_SZIP_K13orNN Explanation 10 11 shuffling + deflate(gzip) Compression 12 shuffling + Compression exactly as in hardware 13 shuffling + allowing k split = 13 Compression 14 shuffling + entropy coding method 15 shuffling + nearest neighbor coding method 16 shuffling + allowing k split = 13 Compression, or entropy coding method 17 HDFE_COMP_SHUF_DEFLATE szip Compression, allowing k split = 13 Compression, or nearest neighbor coding method shuffling + allowing k split = 13 Compression, or nearest neighbor coding method HDFE_COMP_SHUF_SZIP_CHIP HDFE_COMP_SHUF_SZIP_K13 HDFE_COMP_SHUF_SZIP_EC HDFE_COMP_SHUF_SZIP_NN HDFE_COMP_SHUF_SZIP_K13orEC HDFE_COMP_SHUF_SZIP_K13orNN For Compression the data storage must be CHUNKED first Page 11
  • Swath Structure • Dimension maps are the glue that holds the SWATH together. They define the relationship between data fields and geolocation fields by defining, one-by-one, the relationship of each dimension of each geolocation field with the corresponding dimension in each data field. Geolocation Dimension 0 1 2 3 4 5 6 7 8 9 Mapping Offset: 1 Increment: 2 11 13 15 0 1 2 3 4 5 6 7 8 9 10 12 14 1617 1819 Data Dimension A “Normal” Dimension Map Geolocation Dimension 0 1 2 3 4 5 6 7 8 910 1112 1314 151617 1819 0 1 2 3 4 5 6 7 8 9 Data Dimension Mapping Offset: -1 Increment: -2 A “Backwards” Dimension Map Page 12
  • Grid Structure • Usage - Data which is organized by regular geographic spacing, specified by projection parameters. • Structure – Any number of 2-D to 8-D data arrays per structure – Geolocation information contained in projection formula, coupled by structural metadata. – Any number of Grid structures per file allowed. Page 13
  • Grid Structure • A grid contains grid corner locations and a set of projection equations (or references to them) along with their relevant parameters. • The equations and parameters can be used to compute the latitude and longitude for any point in the grid. A Data Field in a Mercator-Projected Grid • Important features of a Grid data set: the data fields, the dimensions, and the projection A Data Field in an Interrupted Goode’s Homolosine-Projected Grid Page 14
  • Grid Structure Data Field characteristics: −Fields may have up to 8 dims − Dim order in field definitions: - C: “Band, YDim, XDim” - Fortran: “XDim, YDim, Band” − Compression is selectable at the field level within a Grid. Subsequent use of the library will un-compress the file. Data needs to be tiled before the compression is applied. − Field names must be unique within a particular Grid structure and are case sensitive. They may be up to 64 characters in length. − Any character can be used with the exception of, ",", ";", " and "/". Page 15
  • Grid Structure Dimensions: • Two predefined dimensions for Data Fields: “XDim” and “YDim”. - defined when the grid is created - stored in the structure metadata. - relate data fields to each other and to the geolocation information • Fields are Two - eight dimensional many fields will need not more than three: the predefined dimensions “XDim” and “YDim” and a third dimension for depth, height, or band. Page 16
  • Grid Structure • Projection: − Is the heart of the Grid structure. − Provides a convenient way to encode geolocation information as a set of mathematical equations, capable of transforming Earth coordinates (lat/long) to X-Y coordinates on a sheet of paper − General Coordinate Transformation Package (GCTP) library contains all projection related conversions and calculations. − Supported projections: Geographic Mercator Transverse Mercator Cylindrical Equal area Hotin Oblique Mercator Sinusoidal* Integerized Sinusoidal Polar Stereographic Albers Conical Equal Area Interrupted Goode’s Homolosine Lambert Azimuthal Equal Area Polyconic Universal Transverse Mercator Space Oblique Mercator Lambert Conformal Conic * Sinusoidal is pseudocylinderical Page 17
  • HDF-EOS Point Structure • Data is specified temporally and/or spatially, but with no particular organization • Structure – Tables used to store science data at a particular Lat/Long/Height – Up to eight levels of data allowed. Structural metadata specifies relationship between levels. Station Chicago Los Angeles Washington Miami Lat 41.49 34.03 38.50 25.45 Lon -87.37 -118.14 -77.00 -80.11 Time Temp(C) 0800 -3 0900 -2 1000 -1 0800 20 0900 21 1000 22 1100 24 1000 6 1100 8 1200 9 1300 11 1400 12 0600 15 0700 16 Page 18
  • Point Structure • Made up of a series of data records taken at [possibly] irregular time intervals and at scattered geographic locations • Loosely organized form of geolocated data supported by HDF-EOS • Level are linked by a common field name called LinkField • Usually shared info is stored in Parent level, while data values stored in Child level • The values for the LinkFiled in the Parent level must be unique Lat 61.12 45.31 38.50 38.39 30.00 37.45 18.00 43.40 34.03 32.45 33.30 42.15 35.05 34.12 46.32 47.36 39.44 21.25 44.58 41.49 25.45 Lon -149.48 -122.41 -77.00 -90.15 -90.05 -122.26 -76.45 -79.23 -118.14 -96.48 -112.00 -71.07 -106.40 -77.56 -87.25 -122.20 -104.59 -78.00 -93.15 -87.37 -80.11 Temp(C) 15.00 17.00 24.00 27.00 22.00 25.00 27.00 30.00 25.00 32.00 30.00 28.00 30.00 28.00 30.00 32.00 31.00 28.00 32.00 28.00 19.00 Dewpt(C) 5.00 5.00 7.00 11.00 7.00 10.00 4.00 14.00 4.00 8.00 10.00 7.00 9.00 9.00 8.00 15.00 16.00 7.00 13.00 9.00 3.00 Page 19
  • Point Structure • Point structure groups are created when user creates “Point_1”, ….. • Data and Linkage groups are created automatically when the level is defined “POINTS” Group Object Attribute <SwathName>: <AttrName> “Point_1” are defined determines the (0based) level index Group Attribute <SwathName>: <AttrName> Data • FWDPOINTER Linkage will Local Attribute <SwathName>: <AttrName> • The order in which the levels not be set (acutally first one is set to (-1,-1)) if the records in Child level is not monotonic in LinkFiekd • A level can contain any number of fields and records Level 1 “Point_n” Linkag Level n FWD BCK POINTER POINTER HDF5 Group Level Data Page 20
  • Zonal Average (ZA) Structure • Generalized array structure with no geolocation linkage (basically a swath like structure without geolocation.) • The interface is designed to support data that has not associated with specific geolocation information. • Data can be organized by time or track parameter • Data spacing can be irregular • Structure “ZAS” group Object Attribute <SwathName>: <AttrName> Group Attribute <DataFields>: <AttrName> Local Attribute <FieldName>: <AttrName> “Za_1” “Za_n” Data Fields Data Field.n HDF5 Group – Data stored in multidimensional arrays – Time stored in 1-D or 2-D array Page 21
  • “h5dump” output of a simple HDF-EOS5 file HDF5 "Grid.he5" { GROUP "/" { GROUP "HDFEOS" { GROUP "ADDITIONAL" { GROUP "FILE_ATTRIBUTES" { } } GROUP "GRIDS" { GROUP "TMGrid" { GROUP "Data Fields" { DATASET "Voltage" { DATATYPE H5T_IEEE_F32BE DATASPACE SIMPLE { ( 5, 7 ) / ( 5, 7 ) } DATA { (0,0): -1.11111,-1.11111,-1.11111,-1.11111,-1.11111, (0,5): -1.11111,-1.11111, ……………………………….. (4,0): -1.11111,-1.11111,-1.11111,-1.11111,-1.11111, (4,5): -1.11111,-1.11111 } Page 22
  • “h5dump” output of a simple HDF-EOS5 file (cont.) ATTRIBUTE "_FillValue" { DATATYPE H5T_IEEE_F32BE DATASPACE SIMPLE { ( 1 ) / ( 1 ) } DATA { (0): -1.11111 } } } } } } } GROUP "HDFEOS INFORMATION" { ATTRIBUTE "HDFEOSVersion" { DATATYPE H5T_STRING { STRSIZE 32; STRPAD H5T_STR_NULLTERM; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } Page 23
  • “h5dump” output of a simple HDF-EOS5 file (cont.) DATASPACE SCALAR DATA { (0): "HDFEOS_5.1.10" } } DATASET "StructMetadata.0" { DATATYPE H5T_STRING { STRSIZE 32000; STRPAD H5T_STR_NULLTERM; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SCALAR DATA { (0): "GROUP=SwathStructure END_GROUP=SwathStructure GROUP=GridStructure GROUP=GRID_1 GridName="TMGrid" XDim=5 YDim=7 Page 24
  • “h5dump” output of a simple HDF-EOS5 file (cont.) UpperLeftPointMtrs=(4855670.775390,9458558.924830) LowerRightMtrs=(5201746.439830,-10466077.249420) Projection=HE5_GCTP_TM ProjParams=(0,0,0.999600,0,-75000000,0,5000000, 0,0,0,0,0,0) SphereCode=0 GROUP=Dimension OBJECT=Dimension_1 DimensionName="Time" Size=10 END_OBJECT=Dimension_1 OBJECT=Dimension_2 DimensionName="Unlim" Size=-1 END_OBJECT=Dimension_2 END_GROUP=Dimension Page 25
  • “h5dump” output of a simple HDF-EOS5 file (cont.) GROUP=DataField OBJECT=DataField_1 DataFieldName="Voltage" DataType=H5T_NATIVE_FLOAT DimList=("XDim","YDim") MaxdimList=("XDim","YDim") END_OBJECT=DataField_1 END_GROUP=DataField GROUP=MergedFields END_GROUP=MergedFields END_GROUP=GRID_1 END_GROUP=GridStructure GROUP=PointStructure END_GROUP=PointStructure GROUP=ZaStructure END_GROUP=ZaStructure END " } } } } } Page 26