SlideShare a Scribd company logo
1 of 6
Download to read offline
Journal of Athletic Training    2004;39(2):132–137
  by the National Athletic Trainers’ Association, Inc
www.journalofathletictraining.org




Influence of Pre-Exercise Muscle
Temperature on Responses to
Eccentric Exercise
Kazunori Nosaka*†; Kei Sakamoto†; Mike Newton*; Paul Sacco*
*Edith Cowan University, Joondalup, Western Australia; †Yokohama City University, Yokohama, Japan

Kazunori Nosaka, PhD, contributed to conception and design; acquisition and analysis and interpretation of the data; and
drafting, critical revision, and final approval of the article. Kei Sakamoto, PhD, contributed to conception and design; acquisition
and analysis and interpretation of the data; and drafting and final approval of the article. Mike Newton, MS, contributed to
acquisition of the data and drafting and final approval of the article. Paul Sacco, PhD, contributed to acquisition of the data and
critical revision and final approval of the article.
Address correspondence to Kazunori Nosaka, PhD, Exercise and Sports Science, Graduate School of Integrated Science,
Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, 236-0027, Japan. Address e-mail to nosaka@
yokohama-cu.ac.jp.


   Objective: We tested the hypothesis that altering the pre-       force and indirect markers of muscle damage, including range
exercise muscle temperature would influence the magnitude of         of motion, upper arm circumference, muscle soreness, and
muscle damage induced by eccentric exercise.                        plasma creatine kinase activity, in the microwave and control
   Subjects: Female students who had no experience in resis-        and icing and control groups using a 2-way, repeated-measures
tance training were placed into either a microwave treatment        analysis of variance.
group (n     10) or an icing treatment group (n     10).               Results: All measures changed significantly (P      .01) after
   Design and Setting: Subjects in each group performed 12          exercise, but neither of the treatments demonstrated significant
maximal eccentric actions of the forearm flexors of each arm         effects on most of the variables compared with the control.
on 2 separate occasions separated by 4 weeks. Before testing,          Conclusions: These results suggest that pre-exercise cool-
the exercise arm was subjected to either passive warming (mi-       ing does not affect the magnitude of muscle damage in re-
crowave) or control for the microwave treatment group or cool-      sponse to eccentric exercise. Similarly, pre-exercise passive
ing (icing) or control for the icing treatment group. The control   muscle warming did not prove beneficial in attenuating indica-
arm performed the same exercise protocol without treatment.         tors of muscle damage. Thus, any beneficial effects of warm-
Limbs were randomized for treatment or control and order of         up exercise cannot be attributed to the effects of increased
testing. Deep muscle temperature increased by approximately         muscle temperature.
3 C after the microwave treatment and decreased approximate-           Key Words: warm-up, microwave diathermy, icing, maximal
ly 5 C after the icing treatment.                                   isometric force, range of motion, creatine kinase, muscle sore-
   Measurements: We evaluated changes in maximal isometric          ness




P
       erforming unaccustomed eccentric exercise results in         cle and connective tissue extensibility, render these structure
       muscle damage that is characterized by a long-lasting        less susceptible to eccentric, exercise-induced muscle damage.
       deficit of muscle function and development of delayed-        To isolate the effects of temperature from the other factors
onset muscle soreness (DOMS).1,2 Although various preven-           associated with warm-up exercise, it is necessary to increase
tive or treatment measures have been claimed to attenuate           muscle temperature passively by use of ultrasound or electro-
muscle damage and DOMS or to facilitate recovery from mus-          magnetic diathermy to simulate the thermal effects of warm-
cle damage, their efficacy is still largely unproven. In athletic    up exercise. In fact, it has been documented that passive
training, warm-up exercises are routinely used to prevent in-       warm-up is indeed effective in reducing muscle injury.9,10
jury, and evidence suggests that warm-up exercise might be          Evans et al3 recently reported that passive warm-up before
effective in reducing the extent of eccentric, exercise-induced     eccentric exercise using pulsed short-wave diathermy in-
                                                                    creased muscle temperature by approximately 1 C and atten-
muscle damage and DOMS.3–7
                                                                    uated swelling but not other clinical symptoms of muscle dam-
   Rodenburg et al5 showed that a combination of a warm-up          age, including muscle soreness. They compared responses
exercise, stretching, and massage reduced some negative ef-         among 5 subject groups (low-heat passive warm-up, high-heat
fects of eccentric exercise, whereas Nosaka and Clarkson4           passive warm-up, active warm-up, no warm-up before eccen-
found that 100 isokinetic concentric contractions of the elbow      tric exercise, and high-heat passive warm-up without eccentric
flexors before eccentric exercise of the same muscles resulted       exercise). Because the intersubject variability in responses to
in less muscle damage than eccentric exercise alone. Some           eccentric exercise was large,1,11 using a crossover design that
authors5,8 have speculated that increased muscle temperature        allows for arm-to-arm comparisons between treatment and
induced by warm-up exercise could, through increasing mus-          control conditions in the same subjects was preferable.


132        Volume 39      • Number 2 • June 2004
If the mechanism by which warm-up is effective in reducing       soft tissue resists the passage of electric energy and can in-
the extent of muscle damage and DOMS involves an increase           crease muscle temperature 3 C to 4 C at depths of 30 to 50
in muscle and tendon extensibility,6,12 then it can be postulated   mm.3,16–18 For the microwave group, 1 upper arm was ran-
that lowering muscle temperature (and therefore compliance          domly assigned to receive microwave treatment using a Mi-
of the musculotendinous unit) would have the opposite effect        croradar (model KTM-250; ITO Co, Osaka, Japan) before ec-
on muscle damage (ie, the extent of muscle damage and               centric exercise. The probe of the Microradar (circular shaped,
DOMS would be exacerbated when eccentric exercise is per-           150 mm in diameter) was placed approximately 5 cm above
formed at a lower muscle temperature). Shellock and Prentice7       the upper arm, and microwave (100 W) was applied for 10
and Safran et al8 noted that the occurrence of muscle injury        minutes while the subject sat in a chair with the arm relaxed
increased when muscle temperature was low. The effects of           on the armrest.
icing after eccentric exercise on DOMS13,14 or recovery of             For the icing group, an ice-cold water bag (0 C) was applied
muscle function15 have been previously reported; however, the       for 15 minutes over the elbow flexors. This treatment has been
effects of muscle cooling before eccentric exercise on the de-      demonstrated to decrease muscle temperature at least
velopment of muscle damage and DOMS have not been stud-             5 C.15,19,20 The water bag containing crushed ice and water
ied to date.                                                        was 10 cm in width and 15 cm in length, enough to cover the
   Therefore, our purpose was to examine the effect of altering     upper arm. A towel was placed between the bag and the skin.
pre-exercise muscle temperature on the indicators of muscle
damage after maximal eccentric exercise of the elbow flexors.
                                                                    Muscle Temperature
METHODS
                                                                       After the microwave or icing treatment, we assessed chang-
                                                                    es in muscle temperature using a needle thermistor probe
Experimental Design                                                 (model N451; Nikkiso-YSI Ltd, Tokyo, Japan) connected to a
   To examine whether altering pre-exercise muscle tempera-         thermometer (model N550; Nikkiso-YSI). Because the tem-
ture affects the magnitude of eccentric, exercise-induced mus-      perature-measurement procedure was invasive and the moni-
cle damage, we performed 2 experiments. The first study in-          toring itself might influence changes in the criterion measures,
vestigated the effects of increased muscle temperature on           we measured muscle temperature on a separate occasion for
changes in several indirect markers of muscle damage in com-        all subjects after completing the exercises and measurements
parison with the control condition by a crossover design. One       for both arms. The thermistor probe (22 gauge, 70 mm) was
arm performed a bout of eccentric exercise after a microwave        inserted into the belly of the biceps brachii to a depth of 15
treatment, and the other arm performed the same exercise            to 20 mm, and the temperature of the muscle was recorded
without treatment. In the second study, we examined the ef-         after stabilization. Measurements were taken before and 1, 5,
fects of decreased muscle temperature on changes in the mus-        and 10 minutes after treatment. Changes in muscle temperature
cle-damage markers in another group of subjects. One arm had        before and after the 12 maximal eccentric actions described
an icing treatment before exercise, and the other arm per-          below were examined in a separate subject (male, age        24
formed the same eccentric exercise without treatment. Use of        years, height     171 cm, mass     66 kg).
the dominant or nondominant arm and the order of treatment
and control condition were randomized for both experiments.
Changes in the measures after eccentric exercise were com-          Exercise
pared between the treatment and control arms in each exper-
iment and between the microwave and icing treatments.                  Subjects performed 12 maximal eccentric actions of the el-
                                                                    bow flexors of each arm on 2 separate occasions, separated by
Subjects                                                            4 weeks, using a modified arm-curl machine.11 One arm per-
                                                                    formed the exercise within 3 minutes after the treatment, and
   Twenty female students who were nonathletes and had not          the other arm performed the same exercise without treatment.
been involved in a resistance-training program participated in      The order of conditions and the use of the treatment or control
this study. Their mean ( SD) age, height, and mass were
                                                                    arm were counterbalanced among subjects.
19.6     2.8 years, 158.2     6.3 cm, and 53.4      7.0 kg, re-
                                                                       During the exercises, the arm was positioned in front of the
spectively. Subjects were randomly placed into either the mi-
                                                                    body on a padded support adjusted to 45 (0.79 radian) of
crowave (n       10) or icing (n     10) group. No significant
differences were noted in the physical characteristics between      shoulder flexion, and the forearm was kept supinated with the
groups. Subjects were free from any musculoskeletal disorders       wrist placed against a lever arm of the arm-curl machine. The
and were instructed not to take any medicine or dietary sup-        elbow joint was forcibly extended by the investigator after a
plements or perform any sports activities or unaccustomed ex-       1-second maximal isometric contraction from a flexed (50 ,
ercise during the experimental period. Each subject read and        0.87 radian) to an extended (180 , 3.14 radian) position in 3
signed a written informed consent form consistent with the          seconds. Subjects were verbally encouraged to generate max-
principles outlined in the Declaration of Helsinki.                 imal isometric force at the starting position and to maximally
                                                                    resist the action throughout the range of motion. This action
                                                                    was repeated every 15 seconds for a total of 12 actions; there-
Treatments                                                          fore, the total exercise time was 3 minutes. The peak force of
  From among the various methods of increasing local muscle         each action was displayed on a digital indicator (model
temperature,16,17 we chose microwave diathermy. Electromag-         F360A; Unipulse, Saitama, Japan), which allowed us to mon-
netic diathermy (short wave, microwave) produces heat when          itor the force output and to motivate the subjects.


                                                                                           Journal of Athletic Training       133
Criterion Measures                                                 treatments (microwave and icing) for the changes in the mea-
   The reliability of the measurements used to evaluate muscle     sures were also made by a 2-way analysis of variance with
damage has been established,1,11,21 and we were familiar with      repeated measures. A 2       7 (6 for DOMS and CK) factorial
the testing protocols. All measurements, except blood samples      analysis of variance was used for the comparison between con-
and muscle-soreness assessments, were taken immediately be-        ditions (microwave and control, icing and control, microwave
fore and after exercise and every 24 hours for 5 days post-        and icing), and the within-groups factor was time (pre-exer-
exercise. Blood samples and muscle-soreness assessments            cise, postexercise, 1–5 days postexercise). When the analysis
were taken at the same time points except for immediately          of variance produced a significant main effect, we computed
after exercise.                                                    a Tukey post hoc test to detect differences in the measures
   Maximal Voluntary Isometric Force. Maximal isometric            between the bouts as well as between the groups at different
force was measured as the peak force attained during a 3-          time points. Statistical significance was set at P   .05 for all
second maximally voluntary effort at an elbow angle of 90          analyses. Because changes in the measures over time for the
(1.57 radian), and 90 (1.57 radian) of shoulder flexion. The        control arm were not significantly different between the mi-
measurement was recorded twice (1 minute between measure-          crowave and icing treatment groups, the data for the control
ments) using a load cell (model 1269; Takei Scientific Instru-      arms from both groups were combined and expressed as one
ments Co Ltd, Nigata, Japan) positioned between 2 cables, 1        ‘‘control condition’’ in the results.
connected to the wrist and the other to the frame of the mea-
surement device. Analog force data from the load cell was          RESULTS
captured by a software program (LabVIEW, National Instru-
ments Corp, Austin, TX) and converted to digital data on a
                                                                   Changes in Muscle Temperature by Treatment
computer (Macintosh Performer 5410; Apple Computer, Inc,
Cupertino, CA). The mean value of the resulting measure-              Muscle temperature increased from 33.9 0.8 C to 37.5
ments was used for later analysis.                                 1.4 C after the microwave treatment and remained elevated by
   Range of Motion. Relaxed and flexed elbow angles were            approximately 3 C for at least 10 minutes. Therefore, muscle
each measured twice by a goniometer. The subject held the          temperature during 12 maximal eccentric actions of the fore-
arm by her side in a relaxed and resting manner for the relaxed    arm flexors in the microwave treatment was at least 3 C higher
angle measurement, and flexed angle was determined when             than the control condition. Icing reduced muscle temperature
the subject maximally and voluntarily flexed the elbow joint.       approximately 8 C from 34.1        0.9 C to 26.4      1.0 C, and
We subtracted the flexed angle from the relaxed angle and used      the temperature was still 5 to 8 C lower for at least 10 minutes
this value as the measure of range of motion of the elbow          after icing. The effect of the 12 maximal eccentric contractions
joint.                                                             of the forearm flexors on muscle temperature was evaluated
   Upper Arm Circumference. Circumference was assessed             in a single subject, and the exercise protocol caused muscle
at 3, 5, 7, 9, and 11 cm from the elbow joint by a tape measure    temperature to rise less than 1 C.
while the subject let the arm hang down by the side. Circum-
ference at each site and the mean value of the 5 measurement
                                                                   Muscle Force During Exercise
sites were used for the analysis.
   Delayed-Onset Muscle Soreness. We evaluated DOMS and               Peak forces and the total amount of work performed during
maximal flexion and extension of the elbow joint using a vi-        the 12 maximal eccentric contractions of the forearm flexors
sual analog scale that had a 50-mm line with ‘‘no pain’’ on        were not significantly different between treatment and control
one end and ‘‘extremely sore’’ on the other. In palpating mus-     arms for both groups or between the treatment arms (micro-
cle soreness, an investigator placed 4 fingers against the biceps   wave and icing).
brachii (proximal, middle, and distal) and applied digital pres-
sure with the tips of the fingers toward the deeper tissues for     Maximal Isometric Force
approximately 3 seconds. The pressure to the muscles was
consistent each day, and the same experienced investigator            Maximal isometric-force values were similar among the mi-
evaluated the muscle soreness everyday. In our previous            crowave (112.2      4.9 N), icing (108.8 5.2 N), and control
study,21 the pressure was shown to be approximately 1 kg/cm2       (110.6 4.0 N) arms. Maximal isometric force decreased sig-
for the palpation assessment.                                      nificantly to approximately 60% of the pre-exercise value im-
   Plasma Creatine Kinase Activity. Approximately 5 mL of          mediately after exercise, reached nadir at 1 day after exercise
blood was drawn from the antecubital vein at each measure-         (50% to 55% of the pre-exercise value), and recovered to 70%
ment time point, except immediately after exercise, and cen-       to 75% of the pre-exercise value by 5 days postexercise (Fig-
trifuged for 10 minutes to obtain plasma and stored at 20 C.       ure 1). The extent of strength loss and rates of recovery were
Plasma creatine kinase (CK) activity was determined spectro-       very similar for both treatment groups and showed no signif-
photometrically by the VP-Super (Dinabott Co Ltd, Tokyo,           icant differences from the control data.
Japan) using test kits. The normal reference range of plasma
CK activity for male adults is 45 to135 IU/L.                      Range of Motion
                                                                      No significant differences were seen in the pre-exercise val-
Statistical Analysis                                               ues of the relaxed and flexed elbow angles among any of the
   Results are expressed as mean SEM. Changes in the cri-          groups. Relaxed elbow angle decreased significantly after ex-
terion measures over time were initially compared between          ercise, with the maximal decrease being observed after 2 to 3
treatment and control arms for each group by a 2-way analysis      days. Compared with the control (10.3 ) and icing (8.9 ) arms,
of variance with repeated measures. Comparisons between the        the microwave treatment arm showed a significantly larger de-


134      Volume 39    • Number 2 • June 2004
Figure 1. Changes in maximal isometric force before (pre-exer-         Figure 3. Changes in upper arm circumference before (pre-exer-
cise), immediately after (postexercise), and 1 to 5 days after ec-     cise), immediately after (postexercise), and 1 to 5 days after ec-
centric exercise in the treatment (microwave, icing) and control       centric exercise in the treatment (microwave, icing) and control
conditions. No significant differences among conditions were not-       conditions. No significant differences were demonstrated among
ed.                                                                    conditions.




Figure 2. Changes in range of motion of the elbow joint before (pre-   Figure 4. Changes in muscle soreness with palpation (A) and ex-
exercise), immediately after (postexercise), and 1 to 5 days after     tension (B) before (pre-exercise) and 1 to 5 days after eccentric
eccentric exercise in the treatment (microwave, icing) and control     exercise in the treatment (microwave, icing) and control condi-
conditions. Significant (P .01) differences were seen between the       tions. No significant differences were noted among conditions.
control and microwave and microwave and icing groups but not
between the control and icing groups.

                                                                       Upper Arm Circumference
crease in relaxed angle (15.5 ) 2 to 3 days after exercise.
Flexed elbow angle was significantly greater immediately after             Pre-exercise circumferences were similar among groups be-
exercise, increased further by 1-day postexercise, and gradu-          fore exercise and increased in a similar fashion after exercise
ally decreased over the next 4 days. Changes in flexed angle            in all groups (Figure 3). Circumference peaked 4 to 5 days
were significantly larger in the microwave treatment arm                after exercise (increasing approximately 8 to 10 mm from pre-
(14.2 ), compared with the control (11.9 ) or icing (9.1 ) arm.        exercise values), and the amount of increase was not signifi-
Pre-exercise range of motion for the microwave, icing, and             cantly different among the 5 sites.
control conditions were 127.6 1.2 , 126.2 1.5 , and 125.9
   1.7 , respectively, values that were not significantly differ-       Delayed-Onset Muscle Soreness
ent. Figure 2 shows the relative changes in range of motion
from the pre-exercise value after exercise. Range of motion               Before exercise, no subject reported any soreness during
decreased approximately 15 immediately after exercise and              palpation or extension assessments. The DOMS developed af-
decreased further 1 to 3 days after exercise. Changes in range         ter exercise, with both palpation and extension soreness peak-
of motion over time were significantly larger for the micro-            ing 1 to 3 days postexercise (Figure 4). The severity of DOMS
wave treatment, compared with the icing and control condi-             was not significantly different between the treatment and con-
tions, with the significant differences observed 2 to 5 days            trol arms for both groups or between the microwave and icing
after exercise.                                                        conditions.


                                                                                               Journal of Athletic Training         135
3 C higher for the microwave treatment arm and at least 2 C
                                                                        lower for the icing arm compared with the control arm when
                                                                        the eccentric exercise was performed. Because muscle tem-
                                                                        perature of the icing arm remained 5 C to 8 C lower than
                                                                        pretreatment level for 10 minutes and the increase in muscle
                                                                        temperature after the 12 maximal eccentric contractions of the
                                                                        forearm flexors was small (less than 1 C), the icing-condition
                                                                        muscle temperature was considered to be lower than the con-
                                                                        trol condition. During prolonged exposure to cold environ-
                                                                        ments, muscle temperature can fall by more than 2 C, and
                                                                        prolonged exercise can increase muscle temperature more than
                                                                        3 C.28,29 Therefore, the muscle-temperature alterations in our
                                                                        study were considered to be within the physiologic range that
                                                                        might be expected after warm-up exercise.
                                                                           If pre-exercise muscle temperature affected the magnitude
                                                                        of muscle damage induced by eccentric exercise, differences
Figure 5. Changes in plasma creatine kinase (CK) activity before        between microwave treatment and control or between icing
(pre-exercise) and 1 to 5 days after eccentric exercise in the treat-   and control or microwave and icing would have been evident.
ment (microwave, icing) and control conditions. No significant dif-      However, no such differences between the conditions were
ferences were seen among conditions.
                                                                        found for any of the criterion measures except elbow angles
                                                                        and range of motion (see Figures 1–5). Although the mecha-
Plasma Creatine Kinase Activity                                         nism responsible for the muscle shortening that leads to the
   Pre-exercise plasma CK values were in the normal reference           reduced joint angle after damaging eccentric exercise is not
ranges for all subjects. Large individual variations in the re-         clear, it is believed to be related to muscle swelling and in-
sponse of plasma CK activity to exercise were noted (Figure             creased intramuscular pressure.2 Further studies are required
5); however, the means and ranges of peak CK activity (mi-              to confirm this finding before additional speculation can be
crowave range: 309–13 086 IU/L; icing: 410–11 493 IU/L;                 made regarding this unexpected result. Despite the changes
control range: 458–14 664 IU/L) were similar among condi-               seen in angles and range of motion, the lack of difference in
tions. The CK increased significantly after exercise, peaking            other markers of muscle damage suggests no major influence
at 4 to 5 days, but no significant difference between treatment          of pre-exercise temperature on the responses of the elbow flex-
and control arms or between microwave and icing conditions              ors to eccentric exercise.
was observed.                                                              Safran et al9 stated that warm-up leads to more relaxed mus-
                                                                        cles, increased extensibility of connective tissue within mus-
                                                                        cle, decreased muscle viscosity, and smoother contractions. It
DISCUSSION                                                              has been suggested that muscle temperature increased by
   Our main findings were that altering muscle temperature               warm-up exercise would render the environment of the muscle
using microwave or icing before exercise had no effect on the           and connective tissue less susceptible to eccentric, exercise-
responses to a bout of eccentric exercise in terms of changes           induced muscle damage.7,8 Nosaka and Clarkson4 found that
in maximal isometric force, upper arm circumference, DOMS,              100 repetitions of isokinetic movements of the forearm before
or plasma CK activity. Furthermore, the findings that the mi-            eccentric exercise of the elbow flexors resulted in less apparent
crowave treatment resulted in significantly larger changes in            muscle damage compared with eccentric exercise without pre-
relaxed and flexed elbow angles and range of motion, com-                vious isokinetic exercise. Although the role of warm-up ex-
pared with the icing and control conditions, are contrary to            ercise in reducing the magnitude of muscle damage is un-
the hypothesis that the microwave treatment would attenuate             known, increased muscle temperature was deemed to be one
the responses to eccentric exercise.                                    of the likely factors. However, we found no positive effects
   It has previously been reported that muscle function de-             for microwave treatment (see Figures 1, 3–5), and the effect
pends on muscle temperature.6,22–26 In our study, pre-exercise          on range of motion was negative (see Figure 2). Furthermore,
maximal isometric force, relaxed and flexed elbow angles, and            there was no evidence of negative effects for the icing con-
range of motion were similar for both treatment and control             dition (see Figures 1–5). Therefore, it appears that warm-up
arms. Peak eccentric force during eccentric exercise was not            exercise may lessen the chance to develop eccentric, exercise-
affected by either treatment, indicating that the thermal inter-        induced muscle damage by mechanisms other than increased
ventions did not alter the extent of the damaging stimulus.             muscle temperature.
Thus, we can assume that the changes in muscle temperature                 Although the increase in muscle temperature observed
because of the treatment were not large enough to affect mus-           through active warm-up will likely raise muscle temperature
cle function or that the volume of muscle affected by the treat-        enough for muscle compliance to increase, other factors also
ments was not sufficient to demonstrate a change.                        influence the viscoelastic properties of the musculotendinous
   The pretreatment muscle temperature (approximately 34 C)             unit. These may include the modification of stretch reflexes
was similar to the level reported in previous studies,6,22–24 and       during warm-up, which may serve to protect the contractile
similar changes in muscle temperature were shown after mi-              apparatus from muscle damage through reduced stiffness.30
crowave diathermy 3,16,18 or icing. 13,19,20,27 Evans et al 3           Furthermore, there is evidence that the increased compliance
showed that a 3.5 C increase in muscle temperature of the               observed with passive warming of a muscle does not result in
biceps brachii from pulsed short-wave diathermy did not result          an increase in the length at which damaging strain occurs dur-
in muscle damage. We found muscle temperature was at least              ing eccentric stretching.31


136       Volume 39     • Number 2 • June 2004
The fact that our results did not support the hypothesis that               12. Szymanski DJ. Recommendations for the avoidance of delayed-onset
increasing muscle temperature by passive warm-up exercise                          muscle soreness. Strength Cond J. 2001;23:7–13.
renders the muscle less susceptible to muscle damage does not                  13. Isabell WK, Durrant E, Myrer W, Anderson S. The effects of ice massage,
                                                                                   ice massage with exercise, and exercise on the prevention and treatment
detract from the potential importance of active warm-up ex-
                                                                                   of delayed onset muscle soreness. J Athl Train. 1992;27:208–217.
ercise in reducing the occurrence or severity of muscle damage                 14. Yackzan L, Adams C, Francis KT. The effects of ice massage on delayed
and DOMS induced by eccentric exercise. Performing general                         muscle soreness. Am J Sports Med. 1984;12:159–165.
and specific warm-up exercise along with dynamic flexibility                     15. Paddon-Jones DJ, Quigley BM. Effect of cryotherapy on muscle soreness
exercises may be effective in reducing eccentric, exercise-in-                     and strength following eccentric exercise. Int J Sports Med. 1997;18:588–
duced muscle damage and DOMS.12,32 However, further study                          593.
is needed to investigate how and why warm-up exercise works                    16. Donley PB. Shortwave and microwave diathermy. In: Prentice WE, ed.
and what is the most effective warm-up procedure to prevent                        Therapeutic Modalities in Sports Medicine. 2nd ed. St Louis, MO: Time
                                                                                   Mirror/Mosby College Publishing; 1990:149–167.
muscle damage and DOMS. The implications of our findings
                                                                               17. Goats GC. Microwave diathermy. Br J Sports Med. 1990;24:212–218.
are first that increased muscle temperature had no attenuating                  18. Draper DO, Knight K, Fujiwara T, Castel JC. Temperature change in
effect on the severity of muscle damage or soreness associated                     human muscle during and after pulsed short-wave diathermy. J Orthop
with eccentric exercise. Second, performing eccentric exercise                     Sports Phys Ther. 1999;29:13–22.
when muscles were colder than normal did not increase the                      19. Lowdon BJ, Moore RJ. Determinants and nature of intramuscular tem-
severity of the muscle-damage response.                                            perature changes during cold therapy. Am J Phys Med. 1975;54:223–233.
                                                                               20. Zemke JE, Andersen JC, Guion KW, McMillan J, Joyner AB. Intramus-
                                                                                   cular temperature responses in the human leg to two forms of cryother-
REFERENCES                                                                         apy: ice massage and ice bag. J Orthop Sports Phys Ther. 1998;27:301–
                                                                                   307.
 1. Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced     21. Nosaka K, Newton M, Sacco P. Delayed-onset muscle soreness does not
    muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24:512–         reflect the magnitude of eccentric exercise-induced muscle damage. Scand
    520.                                                                           J Med Sci Sports. 2002;12:337–346.
 2. Howell JN, Chleboun G, Conatser R. Muscle stiffness, strength loss,        22. Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle
    swelling and soreness following exercise-induced injury in humans. J           strength and power output in human skeletal muscles. Acta Physiol Scand.
    Physiol. 1993;464:183–196.                                                     1979;107:33–37.
 3. Evans RK, Knight KL, Draper DO, Parcell AC. Effects of warm-up be-         23. Bigland-Ritchie B, Thomas CK, Rice CL, Howarth JV, Woods JJ. Muscle
    fore eccentric exercise on indirect markers of muscle damage. Med Sci          temperature, contractile speed, and motoneuron firing rates during human
    Sports Exerc. 2002;34:1892–1899.                                               voluntary contractions. J Appl Physiol. 1992;73:2457–2461.
 4. Nosaka K, Clarkson PM. Influence of previous concentric exercise on         24. Davies CTM, Young K. Effect of temperature on the contractile properties
    eccentric exercise-induced muscle damage. J Sports Sci. 1997;15:477–           and muscle power of triceps surae in humans. J Appl Physiol. 1983;55:
                                                                                   191–195.
    483.
                                                                               25. Meigal AY, Lupandin YV, Hanninen O. Influence of cold and hot con-
                                                                                                                  ¨
 5. Rodenburg JB, Steenbeek D, Schiereck P, Bar PR. Warm-up, stretching
                                                 ¨
                                                                                   ditions on postactivation in human skeletal muscles. Pflugers Arch. 1996;
    and massage diminish harmful effects of eccentric exercise. Int J Sports
                                                                                   432:121–125.
    Med. 1994;15:414–419.
                                                                               26. Ranatunga KW, Sharpe B, Turnbull B. Contractions of a human skeletal
 6. Sargeant AJ. Effect of muscle temperature on leg extension force and
                                                                                   muscle at different temperatures. J Physiol. 1987;390:383–395.
    short-term power output in humans. Eur J Appl Physiol Occup Physiol.
                                                                               27. Myrer JW, Draper DO, Durrant E. Contrast therapy and intramuscular
    1987;56:693–698.                                                               temperature in the human leg. J Athl Train. 1994;29:318–322.
 7. Shellock FG, Prentice WE. Warming-up and stretching for improved           28. Guyton AC. Textbook of Medical Physiology. 8th ed. Philadelphia, PA:
    physical performance and prevention of sports-related injuries. Sports         WB Saunders Co; 1991:797–808.
    Med. 1985;2:267–278.                                                       29. Wirth VJ, Van Lunen BL, Mistry D, Saliba E, McCue FC. Temperature
 8. Safran MR, Garrett WE Jr, Seaber AV, Glisson RR, Ribbeck BM. The               changes in deep muscles of humans during upper and lower extremity
    role of warmup in muscular injury prevention. Am J Sports Med. 1988;           exercise. J Athl Train. 1998;33:211–215.
    16:123–129.                                                                30. Kuitunen S, Avela J, Kyrolainen H, Nicol C, Komi PV. Acute and pro-
                                                                                                              ¨ ¨
 9. Safran MR, Seaber AV, Garrett WE Jr. Warm-up and muscle injury pre-            longed reduction in joint stiffness in humans after exhausting stretch-
    vention: an update. Sports Med. 1989;8:239–249.                                shortening cycle exercise. Eur J Appl Physiol. 2002;88:107–116.
10. Strickler T, Malone T, Garrett WE. The effects of passive warming on       31. Noonan TJ, Best TM, Seaber AV, Garrett WE Jr. Thermal effects on
    muscle injury. Am J Sports Med. 1990;18:141–145.                               skeletal muscle tensile behavior. Am J Sports Med. 1993;21:517–522.
11. Nosaka K, Clarkson PM. Changes in indicators of inflammation after          32. Cross KM, Worrell TW. Effects of a static stretching program on the
    eccentric exercise of the elbow flexors. Med Sci Sports Exerc. 1996;28:         incidence of lower extremity musculotendinous strains. J Athl Train.
    953–961.                                                                       1999;34:11–14.




                                                                                                            Journal of Athletic Training              137

More Related Content

What's hot

Cortisol e pse em treinamento de força
Cortisol e pse em treinamento de forçaCortisol e pse em treinamento de força
Cortisol e pse em treinamento de forçagvirtual
 
Effect of delayed-onset muscle soreness on muscle recovery after a fatiguing ...
Effect of delayed-onset muscle soreness on muscle recovery after a fatiguing ...Effect of delayed-onset muscle soreness on muscle recovery after a fatiguing ...
Effect of delayed-onset muscle soreness on muscle recovery after a fatiguing ...Nosrat hedayatpour
 
Grade 2 muscle injuries treatment with Cryo Mag
Grade 2 muscle injuries treatment with Cryo MagGrade 2 muscle injuries treatment with Cryo Mag
Grade 2 muscle injuries treatment with Cryo MagLevel Medical
 
ActivMotion Bar Study
ActivMotion Bar StudyActivMotion Bar Study
ActivMotion Bar StudyGreg Maurer
 
Handheld Dynamometers And Manual Muscle Testing
Handheld Dynamometers And Manual Muscle TestingHandheld Dynamometers And Manual Muscle Testing
Handheld Dynamometers And Manual Muscle TestingProHealthcareProducts.com
 
EMG of the Transverse Abdominus and Multifidus During Pilates Exercises
EMG of the Transverse Abdominus and Multifidus During Pilates ExercisesEMG of the Transverse Abdominus and Multifidus During Pilates Exercises
EMG of the Transverse Abdominus and Multifidus During Pilates ExercisesGrandFinalTechnologies
 
Efeito do Alongamento Estático Agudo no Máximo Desempenho Muscular
Efeito do Alongamento Estático Agudo no Máximo Desempenho MuscularEfeito do Alongamento Estático Agudo no Máximo Desempenho Muscular
Efeito do Alongamento Estático Agudo no Máximo Desempenho MuscularFernando Farias
 
Youth Sports Injury Day: The Science of Warm-Ups
Youth Sports Injury Day: The Science of Warm-UpsYouth Sports Injury Day: The Science of Warm-Ups
Youth Sports Injury Day: The Science of Warm-UpsaamcEvents
 
Advanced fitness
Advanced fitnessAdvanced fitness
Advanced fitnessron1smith
 
Med X Core Spinal Systems
Med X Core Spinal SystemsMed X Core Spinal Systems
Med X Core Spinal Systemsadamreidcei
 

What's hot (17)

Cortisol e pse em treinamento de força
Cortisol e pse em treinamento de forçaCortisol e pse em treinamento de força
Cortisol e pse em treinamento de força
 
Effect of delayed-onset muscle soreness on muscle recovery after a fatiguing ...
Effect of delayed-onset muscle soreness on muscle recovery after a fatiguing ...Effect of delayed-onset muscle soreness on muscle recovery after a fatiguing ...
Effect of delayed-onset muscle soreness on muscle recovery after a fatiguing ...
 
Grade 2 muscle injuries treatment with Cryo Mag
Grade 2 muscle injuries treatment with Cryo MagGrade 2 muscle injuries treatment with Cryo Mag
Grade 2 muscle injuries treatment with Cryo Mag
 
ActivMotion Bar Study
ActivMotion Bar StudyActivMotion Bar Study
ActivMotion Bar Study
 
Dor e controle motor
Dor e controle motorDor e controle motor
Dor e controle motor
 
Handheld Dynamometers And Manual Muscle Testing
Handheld Dynamometers And Manual Muscle TestingHandheld Dynamometers And Manual Muscle Testing
Handheld Dynamometers And Manual Muscle Testing
 
Ra new (1)
Ra new (1)Ra new (1)
Ra new (1)
 
Ra new
Ra newRa new
Ra new
 
EMG of the Transverse Abdominus and Multifidus During Pilates Exercises
EMG of the Transverse Abdominus and Multifidus During Pilates ExercisesEMG of the Transverse Abdominus and Multifidus During Pilates Exercises
EMG of the Transverse Abdominus and Multifidus During Pilates Exercises
 
Emg pilates
Emg pilatesEmg pilates
Emg pilates
 
Efeito do Alongamento Estático Agudo no Máximo Desempenho Muscular
Efeito do Alongamento Estático Agudo no Máximo Desempenho MuscularEfeito do Alongamento Estático Agudo no Máximo Desempenho Muscular
Efeito do Alongamento Estático Agudo no Máximo Desempenho Muscular
 
Youth Sports Injury Day: The Science of Warm-Ups
Youth Sports Injury Day: The Science of Warm-UpsYouth Sports Injury Day: The Science of Warm-Ups
Youth Sports Injury Day: The Science of Warm-Ups
 
Feb2013 rr-selkowitz
Feb2013 rr-selkowitzFeb2013 rr-selkowitz
Feb2013 rr-selkowitz
 
Emg glúteo medio
Emg glúteo medioEmg glúteo medio
Emg glúteo medio
 
C01061421
C01061421C01061421
C01061421
 
Advanced fitness
Advanced fitnessAdvanced fitness
Advanced fitness
 
Med X Core Spinal Systems
Med X Core Spinal SystemsMed X Core Spinal Systems
Med X Core Spinal Systems
 

Viewers also liked

Crioterapia x sensação e variabilidade da força isométrica
Crioterapia x sensação e variabilidade da força isométricaCrioterapia x sensação e variabilidade da força isométrica
Crioterapia x sensação e variabilidade da força isométricaGustavo Resek Borges
 
Fount of knowledg, on heresies - By Saint John Damascene
Fount of knowledg, on heresies - By Saint John DamasceneFount of knowledg, on heresies - By Saint John Damascene
Fount of knowledg, on heresies - By Saint John DamasceneOrthodoxoOnline
 
Shahram Siva Pr Efforts
Shahram Siva Pr EffortsShahram Siva Pr Efforts
Shahram Siva Pr EffortsTeo Skylark
 
رسالة مفتوحة من د. ع. ط. إلى صاحب الغبطة يوحنا العاشر وأصحاب السيادة أعضاء ال...
رسالة مفتوحة من د. ع. ط. إلى صاحب الغبطة يوحنا العاشر وأصحاب السيادة أعضاء ال...رسالة مفتوحة من د. ع. ط. إلى صاحب الغبطة يوحنا العاشر وأصحاب السيادة أعضاء ال...
رسالة مفتوحة من د. ع. ط. إلى صاحب الغبطة يوحنا العاشر وأصحاب السيادة أعضاء ال...OrthodoxoOnline
 
The Protocols of the Learned Elders of Zion
The Protocols of the Learned Elders of ZionThe Protocols of the Learned Elders of Zion
The Protocols of the Learned Elders of ZionOrthodoxoOnline
 

Viewers also liked (8)

Pt02
Pt02Pt02
Pt02
 
Crioterapia x sensação e variabilidade da força isométrica
Crioterapia x sensação e variabilidade da força isométricaCrioterapia x sensação e variabilidade da força isométrica
Crioterapia x sensação e variabilidade da força isométrica
 
Fount of knowledg, on heresies - By Saint John Damascene
Fount of knowledg, on heresies - By Saint John DamasceneFount of knowledg, on heresies - By Saint John Damascene
Fount of knowledg, on heresies - By Saint John Damascene
 
High volt 03
High volt 03High volt 03
High volt 03
 
Shahram Siva Pr Efforts
Shahram Siva Pr EffortsShahram Siva Pr Efforts
Shahram Siva Pr Efforts
 
21 Principals
21 Principals21 Principals
21 Principals
 
رسالة مفتوحة من د. ع. ط. إلى صاحب الغبطة يوحنا العاشر وأصحاب السيادة أعضاء ال...
رسالة مفتوحة من د. ع. ط. إلى صاحب الغبطة يوحنا العاشر وأصحاب السيادة أعضاء ال...رسالة مفتوحة من د. ع. ط. إلى صاحب الغبطة يوحنا العاشر وأصحاب السيادة أعضاء ال...
رسالة مفتوحة من د. ع. ط. إلى صاحب الغبطة يوحنا العاشر وأصحاب السيادة أعضاء ال...
 
The Protocols of the Learned Elders of Zion
The Protocols of the Learned Elders of ZionThe Protocols of the Learned Elders of Zion
The Protocols of the Learned Elders of Zion
 

Similar to Influence of pre exercise muscle temperature on responses t

Effect of Deep Oscillation as a Recovery Method after Fatiguing Soccer Training
Effect of Deep Oscillation as a Recovery Method after Fatiguing Soccer TrainingEffect of Deep Oscillation as a Recovery Method after Fatiguing Soccer Training
Effect of Deep Oscillation as a Recovery Method after Fatiguing Soccer TrainingMary Fickling
 
Effect of cold water immersion on skeletal muscle contractile properties in s...
Effect of cold water immersion on skeletal muscle contractile properties in s...Effect of cold water immersion on skeletal muscle contractile properties in s...
Effect of cold water immersion on skeletal muscle contractile properties in s...Fernando Farias
 
Delayed-Onset Muscle Soreness Alters the Response to Postural Perturbations
Delayed-Onset Muscle Soreness Alters the Response to Postural PerturbationsDelayed-Onset Muscle Soreness Alters the Response to Postural Perturbations
Delayed-Onset Muscle Soreness Alters the Response to Postural PerturbationsNosrat hedayatpour
 
High intensity warm ups elicit superior performance
High intensity warm ups elicit superior performance High intensity warm ups elicit superior performance
High intensity warm ups elicit superior performance Fernando Farias
 
Warming up & stretching
Warming up & stretchingWarming up & stretching
Warming up & stretchingLintonHarland
 
How to use Electrical Stimulation for Faster Hand Recovery After Stroke? by M...
How to use Electrical Stimulation for Faster Hand Recovery After Stroke? by M...How to use Electrical Stimulation for Faster Hand Recovery After Stroke? by M...
How to use Electrical Stimulation for Faster Hand Recovery After Stroke? by M...Techcare Innovation
 
Criterapia e performance
Criterapia e performanceCriterapia e performance
Criterapia e performanceFernando Farias
 
Cold water immersion versus whole body cryotherapy
Cold water immersion  versus whole body cryotherapyCold water immersion  versus whole body cryotherapy
Cold water immersion versus whole body cryotherapyFernando Farias
 
Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...
Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...
Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...spastudent
 
James et al (2015) Physiological responses to incremental exercise in the he...
James et al  (2015) Physiological responses to incremental exercise in the he...James et al  (2015) Physiological responses to incremental exercise in the he...
James et al (2015) Physiological responses to incremental exercise in the he...Carl James
 
Journal Club Presentation
Journal Club PresentationJournal Club Presentation
Journal Club PresentationSyed Adil
 
Tahran 2020 modified posterior shoulder stretching exercises sis
Tahran 2020   modified posterior shoulder stretching exercises sisTahran 2020   modified posterior shoulder stretching exercises sis
Tahran 2020 modified posterior shoulder stretching exercises sisOLGUINHUERTACRISTIAN
 
Muscle Energy Technique.(soft tissue mobilization)
Muscle Energy Technique.(soft tissue mobilization)Muscle Energy Technique.(soft tissue mobilization)
Muscle Energy Technique.(soft tissue mobilization)DrShrikrishna Shinde
 
An experimental study on scapulothoracic and glenohumeral kinematics followin...
An experimental study on scapulothoracic and glenohumeral kinematics followin...An experimental study on scapulothoracic and glenohumeral kinematics followin...
An experimental study on scapulothoracic and glenohumeral kinematics followin...pharmaindexing
 

Similar to Influence of pre exercise muscle temperature on responses t (20)

Effect of Deep Oscillation as a Recovery Method after Fatiguing Soccer Training
Effect of Deep Oscillation as a Recovery Method after Fatiguing Soccer TrainingEffect of Deep Oscillation as a Recovery Method after Fatiguing Soccer Training
Effect of Deep Oscillation as a Recovery Method after Fatiguing Soccer Training
 
Effect of cold water immersion on skeletal muscle contractile properties in s...
Effect of cold water immersion on skeletal muscle contractile properties in s...Effect of cold water immersion on skeletal muscle contractile properties in s...
Effect of cold water immersion on skeletal muscle contractile properties in s...
 
Emg mapping
Emg mappingEmg mapping
Emg mapping
 
Delayed-Onset Muscle Soreness Alters the Response to Postural Perturbations
Delayed-Onset Muscle Soreness Alters the Response to Postural PerturbationsDelayed-Onset Muscle Soreness Alters the Response to Postural Perturbations
Delayed-Onset Muscle Soreness Alters the Response to Postural Perturbations
 
EffectsofDirectStimulation.docx
EffectsofDirectStimulation.docxEffectsofDirectStimulation.docx
EffectsofDirectStimulation.docx
 
Ankle Sprain Case Study—AvicennaLaser.com
Ankle Sprain Case Study—AvicennaLaser.comAnkle Sprain Case Study—AvicennaLaser.com
Ankle Sprain Case Study—AvicennaLaser.com
 
High intensity warm ups elicit superior performance
High intensity warm ups elicit superior performance High intensity warm ups elicit superior performance
High intensity warm ups elicit superior performance
 
Warming up & stretching
Warming up & stretchingWarming up & stretching
Warming up & stretching
 
3.1 Amman 2011.pdf
3.1 Amman 2011.pdf3.1 Amman 2011.pdf
3.1 Amman 2011.pdf
 
How to use Electrical Stimulation for Faster Hand Recovery After Stroke? by M...
How to use Electrical Stimulation for Faster Hand Recovery After Stroke? by M...How to use Electrical Stimulation for Faster Hand Recovery After Stroke? by M...
How to use Electrical Stimulation for Faster Hand Recovery After Stroke? by M...
 
Criterapia e performance
Criterapia e performanceCriterapia e performance
Criterapia e performance
 
Cold water immersion versus whole body cryotherapy
Cold water immersion  versus whole body cryotherapyCold water immersion  versus whole body cryotherapy
Cold water immersion versus whole body cryotherapy
 
Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...
Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...
Shoulder Muscle Activity of Badminton players in an overhead smash. A compari...
 
Cryotherapy
CryotherapyCryotherapy
Cryotherapy
 
James et al (2015) Physiological responses to incremental exercise in the he...
James et al  (2015) Physiological responses to incremental exercise in the he...James et al  (2015) Physiological responses to incremental exercise in the he...
James et al (2015) Physiological responses to incremental exercise in the he...
 
Journal Club Presentation
Journal Club PresentationJournal Club Presentation
Journal Club Presentation
 
Tahran 2020 modified posterior shoulder stretching exercises sis
Tahran 2020   modified posterior shoulder stretching exercises sisTahran 2020   modified posterior shoulder stretching exercises sis
Tahran 2020 modified posterior shoulder stretching exercises sis
 
Muscle Energy Technique
Muscle Energy TechniqueMuscle Energy Technique
Muscle Energy Technique
 
Muscle Energy Technique.(soft tissue mobilization)
Muscle Energy Technique.(soft tissue mobilization)Muscle Energy Technique.(soft tissue mobilization)
Muscle Energy Technique.(soft tissue mobilization)
 
An experimental study on scapulothoracic and glenohumeral kinematics followin...
An experimental study on scapulothoracic and glenohumeral kinematics followin...An experimental study on scapulothoracic and glenohumeral kinematics followin...
An experimental study on scapulothoracic and glenohumeral kinematics followin...
 

More from Gustavo Resek Borges

Revisão de lesão secund e trauma
Revisão de lesão secund e traumaRevisão de lesão secund e trauma
Revisão de lesão secund e traumaGustavo Resek Borges
 
Hormônios menstruais x lassidão lca
Hormônios menstruais x lassidão lcaHormônios menstruais x lassidão lca
Hormônios menstruais x lassidão lcaGustavo Resek Borges
 
Goodwin efetividade da fisio supervisionada num período prec
Goodwin efetividade da fisio supervisionada num período precGoodwin efetividade da fisio supervisionada num período prec
Goodwin efetividade da fisio supervisionada num período precGustavo Resek Borges
 
Fortalec precoce quadric após atj
Fortalec precoce quadric após atjFortalec precoce quadric após atj
Fortalec precoce quadric após atjGustavo Resek Borges
 
Falworth instabilidade póstero lat do joelho - diagn e tto
Falworth instabilidade póstero lat do joelho - diagn e ttoFalworth instabilidade póstero lat do joelho - diagn e tto
Falworth instabilidade póstero lat do joelho - diagn e ttoGustavo Resek Borges
 
Earl etiologia mecânica, recognição e tto de espondilolistes
Earl etiologia mecânica, recognição e tto de espondilolistesEarl etiologia mecânica, recognição e tto de espondilolistes
Earl etiologia mecânica, recognição e tto de espondilolistesGustavo Resek Borges
 
Dor em adolescentes x atletas adultos pós lca
Dor em adolescentes x atletas adultos pós lcaDor em adolescentes x atletas adultos pós lca
Dor em adolescentes x atletas adultos pós lcaGustavo Resek Borges
 
Definições de marcadores esqueléticos
Definições de marcadores esqueléticosDefinições de marcadores esqueléticos
Definições de marcadores esqueléticosGustavo Resek Borges
 
Cool water immersion and high-voltage electric stimulation
Cool water immersion and high-voltage electric stimulation Cool water immersion and high-voltage electric stimulation
Cool water immersion and high-voltage electric stimulation Gustavo Resek Borges
 
Comparação do aquec de 2 us diferentes
Comparação do aquec de 2 us diferentesComparação do aquec de 2 us diferentes
Comparação do aquec de 2 us diferentesGustavo Resek Borges
 
Shetty a evolução da artroplastia total de joelho. parte i
Shetty a evolução da artroplastia total de joelho. parte i  Shetty a evolução da artroplastia total de joelho. parte i
Shetty a evolução da artroplastia total de joelho. parte i Gustavo Resek Borges
 
Reabil e princ básicos no tto meniscal
Reabil e princ básicos no tto meniscalReabil e princ básicos no tto meniscal
Reabil e princ básicos no tto meniscalGustavo Resek Borges
 

More from Gustavo Resek Borges (17)

Revisão de lesão secund e trauma
Revisão de lesão secund e traumaRevisão de lesão secund e trauma
Revisão de lesão secund e trauma
 
Hormônios menstruais x lassidão lca
Hormônios menstruais x lassidão lcaHormônios menstruais x lassidão lca
Hormônios menstruais x lassidão lca
 
Hidralazina x retalho
Hidralazina x retalhoHidralazina x retalho
Hidralazina x retalho
 
Goodwin efetividade da fisio supervisionada num período prec
Goodwin efetividade da fisio supervisionada num período precGoodwin efetividade da fisio supervisionada num período prec
Goodwin efetividade da fisio supervisionada num período prec
 
Fortalec precoce quadric após atj
Fortalec precoce quadric após atjFortalec precoce quadric após atj
Fortalec precoce quadric após atj
 
Falworth instabilidade póstero lat do joelho - diagn e tto
Falworth instabilidade póstero lat do joelho - diagn e ttoFalworth instabilidade póstero lat do joelho - diagn e tto
Falworth instabilidade póstero lat do joelho - diagn e tto
 
Emg de ccf em mi em reabil lca
Emg de ccf em mi em reabil lcaEmg de ccf em mi em reabil lca
Emg de ccf em mi em reabil lca
 
Efeitos não térmicos do us
Efeitos não térmicos do usEfeitos não térmicos do us
Efeitos não térmicos do us
 
Earl etiologia mecânica, recognição e tto de espondilolistes
Earl etiologia mecânica, recognição e tto de espondilolistesEarl etiologia mecânica, recognição e tto de espondilolistes
Earl etiologia mecânica, recognição e tto de espondilolistes
 
Dor em adolescentes x atletas adultos pós lca
Dor em adolescentes x atletas adultos pós lcaDor em adolescentes x atletas adultos pós lca
Dor em adolescentes x atletas adultos pós lca
 
Definições de marcadores esqueléticos
Definições de marcadores esqueléticosDefinições de marcadores esqueléticos
Definições de marcadores esqueléticos
 
Corrente russa 02
Corrente russa 02Corrente russa 02
Corrente russa 02
 
Corrente russa 01
Corrente russa 01Corrente russa 01
Corrente russa 01
 
Cool water immersion and high-voltage electric stimulation
Cool water immersion and high-voltage electric stimulation Cool water immersion and high-voltage electric stimulation
Cool water immersion and high-voltage electric stimulation
 
Comparação do aquec de 2 us diferentes
Comparação do aquec de 2 us diferentesComparação do aquec de 2 us diferentes
Comparação do aquec de 2 us diferentes
 
Shetty a evolução da artroplastia total de joelho. parte i
Shetty a evolução da artroplastia total de joelho. parte i  Shetty a evolução da artroplastia total de joelho. parte i
Shetty a evolução da artroplastia total de joelho. parte i
 
Reabil e princ básicos no tto meniscal
Reabil e princ básicos no tto meniscalReabil e princ básicos no tto meniscal
Reabil e princ básicos no tto meniscal
 

Influence of pre exercise muscle temperature on responses t

  • 1. Journal of Athletic Training 2004;39(2):132–137 by the National Athletic Trainers’ Association, Inc www.journalofathletictraining.org Influence of Pre-Exercise Muscle Temperature on Responses to Eccentric Exercise Kazunori Nosaka*†; Kei Sakamoto†; Mike Newton*; Paul Sacco* *Edith Cowan University, Joondalup, Western Australia; †Yokohama City University, Yokohama, Japan Kazunori Nosaka, PhD, contributed to conception and design; acquisition and analysis and interpretation of the data; and drafting, critical revision, and final approval of the article. Kei Sakamoto, PhD, contributed to conception and design; acquisition and analysis and interpretation of the data; and drafting and final approval of the article. Mike Newton, MS, contributed to acquisition of the data and drafting and final approval of the article. Paul Sacco, PhD, contributed to acquisition of the data and critical revision and final approval of the article. Address correspondence to Kazunori Nosaka, PhD, Exercise and Sports Science, Graduate School of Integrated Science, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, 236-0027, Japan. Address e-mail to nosaka@ yokohama-cu.ac.jp. Objective: We tested the hypothesis that altering the pre- force and indirect markers of muscle damage, including range exercise muscle temperature would influence the magnitude of of motion, upper arm circumference, muscle soreness, and muscle damage induced by eccentric exercise. plasma creatine kinase activity, in the microwave and control Subjects: Female students who had no experience in resis- and icing and control groups using a 2-way, repeated-measures tance training were placed into either a microwave treatment analysis of variance. group (n 10) or an icing treatment group (n 10). Results: All measures changed significantly (P .01) after Design and Setting: Subjects in each group performed 12 exercise, but neither of the treatments demonstrated significant maximal eccentric actions of the forearm flexors of each arm effects on most of the variables compared with the control. on 2 separate occasions separated by 4 weeks. Before testing, Conclusions: These results suggest that pre-exercise cool- the exercise arm was subjected to either passive warming (mi- ing does not affect the magnitude of muscle damage in re- crowave) or control for the microwave treatment group or cool- sponse to eccentric exercise. Similarly, pre-exercise passive ing (icing) or control for the icing treatment group. The control muscle warming did not prove beneficial in attenuating indica- arm performed the same exercise protocol without treatment. tors of muscle damage. Thus, any beneficial effects of warm- Limbs were randomized for treatment or control and order of up exercise cannot be attributed to the effects of increased testing. Deep muscle temperature increased by approximately muscle temperature. 3 C after the microwave treatment and decreased approximate- Key Words: warm-up, microwave diathermy, icing, maximal ly 5 C after the icing treatment. isometric force, range of motion, creatine kinase, muscle sore- Measurements: We evaluated changes in maximal isometric ness P erforming unaccustomed eccentric exercise results in cle and connective tissue extensibility, render these structure muscle damage that is characterized by a long-lasting less susceptible to eccentric, exercise-induced muscle damage. deficit of muscle function and development of delayed- To isolate the effects of temperature from the other factors onset muscle soreness (DOMS).1,2 Although various preven- associated with warm-up exercise, it is necessary to increase tive or treatment measures have been claimed to attenuate muscle temperature passively by use of ultrasound or electro- muscle damage and DOMS or to facilitate recovery from mus- magnetic diathermy to simulate the thermal effects of warm- cle damage, their efficacy is still largely unproven. In athletic up exercise. In fact, it has been documented that passive training, warm-up exercises are routinely used to prevent in- warm-up is indeed effective in reducing muscle injury.9,10 jury, and evidence suggests that warm-up exercise might be Evans et al3 recently reported that passive warm-up before effective in reducing the extent of eccentric, exercise-induced eccentric exercise using pulsed short-wave diathermy in- creased muscle temperature by approximately 1 C and atten- muscle damage and DOMS.3–7 uated swelling but not other clinical symptoms of muscle dam- Rodenburg et al5 showed that a combination of a warm-up age, including muscle soreness. They compared responses exercise, stretching, and massage reduced some negative ef- among 5 subject groups (low-heat passive warm-up, high-heat fects of eccentric exercise, whereas Nosaka and Clarkson4 passive warm-up, active warm-up, no warm-up before eccen- found that 100 isokinetic concentric contractions of the elbow tric exercise, and high-heat passive warm-up without eccentric flexors before eccentric exercise of the same muscles resulted exercise). Because the intersubject variability in responses to in less muscle damage than eccentric exercise alone. Some eccentric exercise was large,1,11 using a crossover design that authors5,8 have speculated that increased muscle temperature allows for arm-to-arm comparisons between treatment and induced by warm-up exercise could, through increasing mus- control conditions in the same subjects was preferable. 132 Volume 39 • Number 2 • June 2004
  • 2. If the mechanism by which warm-up is effective in reducing soft tissue resists the passage of electric energy and can in- the extent of muscle damage and DOMS involves an increase crease muscle temperature 3 C to 4 C at depths of 30 to 50 in muscle and tendon extensibility,6,12 then it can be postulated mm.3,16–18 For the microwave group, 1 upper arm was ran- that lowering muscle temperature (and therefore compliance domly assigned to receive microwave treatment using a Mi- of the musculotendinous unit) would have the opposite effect croradar (model KTM-250; ITO Co, Osaka, Japan) before ec- on muscle damage (ie, the extent of muscle damage and centric exercise. The probe of the Microradar (circular shaped, DOMS would be exacerbated when eccentric exercise is per- 150 mm in diameter) was placed approximately 5 cm above formed at a lower muscle temperature). Shellock and Prentice7 the upper arm, and microwave (100 W) was applied for 10 and Safran et al8 noted that the occurrence of muscle injury minutes while the subject sat in a chair with the arm relaxed increased when muscle temperature was low. The effects of on the armrest. icing after eccentric exercise on DOMS13,14 or recovery of For the icing group, an ice-cold water bag (0 C) was applied muscle function15 have been previously reported; however, the for 15 minutes over the elbow flexors. This treatment has been effects of muscle cooling before eccentric exercise on the de- demonstrated to decrease muscle temperature at least velopment of muscle damage and DOMS have not been stud- 5 C.15,19,20 The water bag containing crushed ice and water ied to date. was 10 cm in width and 15 cm in length, enough to cover the Therefore, our purpose was to examine the effect of altering upper arm. A towel was placed between the bag and the skin. pre-exercise muscle temperature on the indicators of muscle damage after maximal eccentric exercise of the elbow flexors. Muscle Temperature METHODS After the microwave or icing treatment, we assessed chang- es in muscle temperature using a needle thermistor probe Experimental Design (model N451; Nikkiso-YSI Ltd, Tokyo, Japan) connected to a To examine whether altering pre-exercise muscle tempera- thermometer (model N550; Nikkiso-YSI). Because the tem- ture affects the magnitude of eccentric, exercise-induced mus- perature-measurement procedure was invasive and the moni- cle damage, we performed 2 experiments. The first study in- toring itself might influence changes in the criterion measures, vestigated the effects of increased muscle temperature on we measured muscle temperature on a separate occasion for changes in several indirect markers of muscle damage in com- all subjects after completing the exercises and measurements parison with the control condition by a crossover design. One for both arms. The thermistor probe (22 gauge, 70 mm) was arm performed a bout of eccentric exercise after a microwave inserted into the belly of the biceps brachii to a depth of 15 treatment, and the other arm performed the same exercise to 20 mm, and the temperature of the muscle was recorded without treatment. In the second study, we examined the ef- after stabilization. Measurements were taken before and 1, 5, fects of decreased muscle temperature on changes in the mus- and 10 minutes after treatment. Changes in muscle temperature cle-damage markers in another group of subjects. One arm had before and after the 12 maximal eccentric actions described an icing treatment before exercise, and the other arm per- below were examined in a separate subject (male, age 24 formed the same eccentric exercise without treatment. Use of years, height 171 cm, mass 66 kg). the dominant or nondominant arm and the order of treatment and control condition were randomized for both experiments. Changes in the measures after eccentric exercise were com- Exercise pared between the treatment and control arms in each exper- iment and between the microwave and icing treatments. Subjects performed 12 maximal eccentric actions of the el- bow flexors of each arm on 2 separate occasions, separated by Subjects 4 weeks, using a modified arm-curl machine.11 One arm per- formed the exercise within 3 minutes after the treatment, and Twenty female students who were nonathletes and had not the other arm performed the same exercise without treatment. been involved in a resistance-training program participated in The order of conditions and the use of the treatment or control this study. Their mean ( SD) age, height, and mass were arm were counterbalanced among subjects. 19.6 2.8 years, 158.2 6.3 cm, and 53.4 7.0 kg, re- During the exercises, the arm was positioned in front of the spectively. Subjects were randomly placed into either the mi- body on a padded support adjusted to 45 (0.79 radian) of crowave (n 10) or icing (n 10) group. No significant differences were noted in the physical characteristics between shoulder flexion, and the forearm was kept supinated with the groups. Subjects were free from any musculoskeletal disorders wrist placed against a lever arm of the arm-curl machine. The and were instructed not to take any medicine or dietary sup- elbow joint was forcibly extended by the investigator after a plements or perform any sports activities or unaccustomed ex- 1-second maximal isometric contraction from a flexed (50 , ercise during the experimental period. Each subject read and 0.87 radian) to an extended (180 , 3.14 radian) position in 3 signed a written informed consent form consistent with the seconds. Subjects were verbally encouraged to generate max- principles outlined in the Declaration of Helsinki. imal isometric force at the starting position and to maximally resist the action throughout the range of motion. This action was repeated every 15 seconds for a total of 12 actions; there- Treatments fore, the total exercise time was 3 minutes. The peak force of From among the various methods of increasing local muscle each action was displayed on a digital indicator (model temperature,16,17 we chose microwave diathermy. Electromag- F360A; Unipulse, Saitama, Japan), which allowed us to mon- netic diathermy (short wave, microwave) produces heat when itor the force output and to motivate the subjects. Journal of Athletic Training 133
  • 3. Criterion Measures treatments (microwave and icing) for the changes in the mea- The reliability of the measurements used to evaluate muscle sures were also made by a 2-way analysis of variance with damage has been established,1,11,21 and we were familiar with repeated measures. A 2 7 (6 for DOMS and CK) factorial the testing protocols. All measurements, except blood samples analysis of variance was used for the comparison between con- and muscle-soreness assessments, were taken immediately be- ditions (microwave and control, icing and control, microwave fore and after exercise and every 24 hours for 5 days post- and icing), and the within-groups factor was time (pre-exer- exercise. Blood samples and muscle-soreness assessments cise, postexercise, 1–5 days postexercise). When the analysis were taken at the same time points except for immediately of variance produced a significant main effect, we computed after exercise. a Tukey post hoc test to detect differences in the measures Maximal Voluntary Isometric Force. Maximal isometric between the bouts as well as between the groups at different force was measured as the peak force attained during a 3- time points. Statistical significance was set at P .05 for all second maximally voluntary effort at an elbow angle of 90 analyses. Because changes in the measures over time for the (1.57 radian), and 90 (1.57 radian) of shoulder flexion. The control arm were not significantly different between the mi- measurement was recorded twice (1 minute between measure- crowave and icing treatment groups, the data for the control ments) using a load cell (model 1269; Takei Scientific Instru- arms from both groups were combined and expressed as one ments Co Ltd, Nigata, Japan) positioned between 2 cables, 1 ‘‘control condition’’ in the results. connected to the wrist and the other to the frame of the mea- surement device. Analog force data from the load cell was RESULTS captured by a software program (LabVIEW, National Instru- ments Corp, Austin, TX) and converted to digital data on a Changes in Muscle Temperature by Treatment computer (Macintosh Performer 5410; Apple Computer, Inc, Cupertino, CA). The mean value of the resulting measure- Muscle temperature increased from 33.9 0.8 C to 37.5 ments was used for later analysis. 1.4 C after the microwave treatment and remained elevated by Range of Motion. Relaxed and flexed elbow angles were approximately 3 C for at least 10 minutes. Therefore, muscle each measured twice by a goniometer. The subject held the temperature during 12 maximal eccentric actions of the fore- arm by her side in a relaxed and resting manner for the relaxed arm flexors in the microwave treatment was at least 3 C higher angle measurement, and flexed angle was determined when than the control condition. Icing reduced muscle temperature the subject maximally and voluntarily flexed the elbow joint. approximately 8 C from 34.1 0.9 C to 26.4 1.0 C, and We subtracted the flexed angle from the relaxed angle and used the temperature was still 5 to 8 C lower for at least 10 minutes this value as the measure of range of motion of the elbow after icing. The effect of the 12 maximal eccentric contractions joint. of the forearm flexors on muscle temperature was evaluated Upper Arm Circumference. Circumference was assessed in a single subject, and the exercise protocol caused muscle at 3, 5, 7, 9, and 11 cm from the elbow joint by a tape measure temperature to rise less than 1 C. while the subject let the arm hang down by the side. Circum- ference at each site and the mean value of the 5 measurement Muscle Force During Exercise sites were used for the analysis. Delayed-Onset Muscle Soreness. We evaluated DOMS and Peak forces and the total amount of work performed during maximal flexion and extension of the elbow joint using a vi- the 12 maximal eccentric contractions of the forearm flexors sual analog scale that had a 50-mm line with ‘‘no pain’’ on were not significantly different between treatment and control one end and ‘‘extremely sore’’ on the other. In palpating mus- arms for both groups or between the treatment arms (micro- cle soreness, an investigator placed 4 fingers against the biceps wave and icing). brachii (proximal, middle, and distal) and applied digital pres- sure with the tips of the fingers toward the deeper tissues for Maximal Isometric Force approximately 3 seconds. The pressure to the muscles was consistent each day, and the same experienced investigator Maximal isometric-force values were similar among the mi- evaluated the muscle soreness everyday. In our previous crowave (112.2 4.9 N), icing (108.8 5.2 N), and control study,21 the pressure was shown to be approximately 1 kg/cm2 (110.6 4.0 N) arms. Maximal isometric force decreased sig- for the palpation assessment. nificantly to approximately 60% of the pre-exercise value im- Plasma Creatine Kinase Activity. Approximately 5 mL of mediately after exercise, reached nadir at 1 day after exercise blood was drawn from the antecubital vein at each measure- (50% to 55% of the pre-exercise value), and recovered to 70% ment time point, except immediately after exercise, and cen- to 75% of the pre-exercise value by 5 days postexercise (Fig- trifuged for 10 minutes to obtain plasma and stored at 20 C. ure 1). The extent of strength loss and rates of recovery were Plasma creatine kinase (CK) activity was determined spectro- very similar for both treatment groups and showed no signif- photometrically by the VP-Super (Dinabott Co Ltd, Tokyo, icant differences from the control data. Japan) using test kits. The normal reference range of plasma CK activity for male adults is 45 to135 IU/L. Range of Motion No significant differences were seen in the pre-exercise val- Statistical Analysis ues of the relaxed and flexed elbow angles among any of the Results are expressed as mean SEM. Changes in the cri- groups. Relaxed elbow angle decreased significantly after ex- terion measures over time were initially compared between ercise, with the maximal decrease being observed after 2 to 3 treatment and control arms for each group by a 2-way analysis days. Compared with the control (10.3 ) and icing (8.9 ) arms, of variance with repeated measures. Comparisons between the the microwave treatment arm showed a significantly larger de- 134 Volume 39 • Number 2 • June 2004
  • 4. Figure 1. Changes in maximal isometric force before (pre-exer- Figure 3. Changes in upper arm circumference before (pre-exer- cise), immediately after (postexercise), and 1 to 5 days after ec- cise), immediately after (postexercise), and 1 to 5 days after ec- centric exercise in the treatment (microwave, icing) and control centric exercise in the treatment (microwave, icing) and control conditions. No significant differences among conditions were not- conditions. No significant differences were demonstrated among ed. conditions. Figure 2. Changes in range of motion of the elbow joint before (pre- Figure 4. Changes in muscle soreness with palpation (A) and ex- exercise), immediately after (postexercise), and 1 to 5 days after tension (B) before (pre-exercise) and 1 to 5 days after eccentric eccentric exercise in the treatment (microwave, icing) and control exercise in the treatment (microwave, icing) and control condi- conditions. Significant (P .01) differences were seen between the tions. No significant differences were noted among conditions. control and microwave and microwave and icing groups but not between the control and icing groups. Upper Arm Circumference crease in relaxed angle (15.5 ) 2 to 3 days after exercise. Flexed elbow angle was significantly greater immediately after Pre-exercise circumferences were similar among groups be- exercise, increased further by 1-day postexercise, and gradu- fore exercise and increased in a similar fashion after exercise ally decreased over the next 4 days. Changes in flexed angle in all groups (Figure 3). Circumference peaked 4 to 5 days were significantly larger in the microwave treatment arm after exercise (increasing approximately 8 to 10 mm from pre- (14.2 ), compared with the control (11.9 ) or icing (9.1 ) arm. exercise values), and the amount of increase was not signifi- Pre-exercise range of motion for the microwave, icing, and cantly different among the 5 sites. control conditions were 127.6 1.2 , 126.2 1.5 , and 125.9 1.7 , respectively, values that were not significantly differ- Delayed-Onset Muscle Soreness ent. Figure 2 shows the relative changes in range of motion from the pre-exercise value after exercise. Range of motion Before exercise, no subject reported any soreness during decreased approximately 15 immediately after exercise and palpation or extension assessments. The DOMS developed af- decreased further 1 to 3 days after exercise. Changes in range ter exercise, with both palpation and extension soreness peak- of motion over time were significantly larger for the micro- ing 1 to 3 days postexercise (Figure 4). The severity of DOMS wave treatment, compared with the icing and control condi- was not significantly different between the treatment and con- tions, with the significant differences observed 2 to 5 days trol arms for both groups or between the microwave and icing after exercise. conditions. Journal of Athletic Training 135
  • 5. 3 C higher for the microwave treatment arm and at least 2 C lower for the icing arm compared with the control arm when the eccentric exercise was performed. Because muscle tem- perature of the icing arm remained 5 C to 8 C lower than pretreatment level for 10 minutes and the increase in muscle temperature after the 12 maximal eccentric contractions of the forearm flexors was small (less than 1 C), the icing-condition muscle temperature was considered to be lower than the con- trol condition. During prolonged exposure to cold environ- ments, muscle temperature can fall by more than 2 C, and prolonged exercise can increase muscle temperature more than 3 C.28,29 Therefore, the muscle-temperature alterations in our study were considered to be within the physiologic range that might be expected after warm-up exercise. If pre-exercise muscle temperature affected the magnitude of muscle damage induced by eccentric exercise, differences Figure 5. Changes in plasma creatine kinase (CK) activity before between microwave treatment and control or between icing (pre-exercise) and 1 to 5 days after eccentric exercise in the treat- and control or microwave and icing would have been evident. ment (microwave, icing) and control conditions. No significant dif- However, no such differences between the conditions were ferences were seen among conditions. found for any of the criterion measures except elbow angles and range of motion (see Figures 1–5). Although the mecha- Plasma Creatine Kinase Activity nism responsible for the muscle shortening that leads to the Pre-exercise plasma CK values were in the normal reference reduced joint angle after damaging eccentric exercise is not ranges for all subjects. Large individual variations in the re- clear, it is believed to be related to muscle swelling and in- sponse of plasma CK activity to exercise were noted (Figure creased intramuscular pressure.2 Further studies are required 5); however, the means and ranges of peak CK activity (mi- to confirm this finding before additional speculation can be crowave range: 309–13 086 IU/L; icing: 410–11 493 IU/L; made regarding this unexpected result. Despite the changes control range: 458–14 664 IU/L) were similar among condi- seen in angles and range of motion, the lack of difference in tions. The CK increased significantly after exercise, peaking other markers of muscle damage suggests no major influence at 4 to 5 days, but no significant difference between treatment of pre-exercise temperature on the responses of the elbow flex- and control arms or between microwave and icing conditions ors to eccentric exercise. was observed. Safran et al9 stated that warm-up leads to more relaxed mus- cles, increased extensibility of connective tissue within mus- cle, decreased muscle viscosity, and smoother contractions. It DISCUSSION has been suggested that muscle temperature increased by Our main findings were that altering muscle temperature warm-up exercise would render the environment of the muscle using microwave or icing before exercise had no effect on the and connective tissue less susceptible to eccentric, exercise- responses to a bout of eccentric exercise in terms of changes induced muscle damage.7,8 Nosaka and Clarkson4 found that in maximal isometric force, upper arm circumference, DOMS, 100 repetitions of isokinetic movements of the forearm before or plasma CK activity. Furthermore, the findings that the mi- eccentric exercise of the elbow flexors resulted in less apparent crowave treatment resulted in significantly larger changes in muscle damage compared with eccentric exercise without pre- relaxed and flexed elbow angles and range of motion, com- vious isokinetic exercise. Although the role of warm-up ex- pared with the icing and control conditions, are contrary to ercise in reducing the magnitude of muscle damage is un- the hypothesis that the microwave treatment would attenuate known, increased muscle temperature was deemed to be one the responses to eccentric exercise. of the likely factors. However, we found no positive effects It has previously been reported that muscle function de- for microwave treatment (see Figures 1, 3–5), and the effect pends on muscle temperature.6,22–26 In our study, pre-exercise on range of motion was negative (see Figure 2). Furthermore, maximal isometric force, relaxed and flexed elbow angles, and there was no evidence of negative effects for the icing con- range of motion were similar for both treatment and control dition (see Figures 1–5). Therefore, it appears that warm-up arms. Peak eccentric force during eccentric exercise was not exercise may lessen the chance to develop eccentric, exercise- affected by either treatment, indicating that the thermal inter- induced muscle damage by mechanisms other than increased ventions did not alter the extent of the damaging stimulus. muscle temperature. Thus, we can assume that the changes in muscle temperature Although the increase in muscle temperature observed because of the treatment were not large enough to affect mus- through active warm-up will likely raise muscle temperature cle function or that the volume of muscle affected by the treat- enough for muscle compliance to increase, other factors also ments was not sufficient to demonstrate a change. influence the viscoelastic properties of the musculotendinous The pretreatment muscle temperature (approximately 34 C) unit. These may include the modification of stretch reflexes was similar to the level reported in previous studies,6,22–24 and during warm-up, which may serve to protect the contractile similar changes in muscle temperature were shown after mi- apparatus from muscle damage through reduced stiffness.30 crowave diathermy 3,16,18 or icing. 13,19,20,27 Evans et al 3 Furthermore, there is evidence that the increased compliance showed that a 3.5 C increase in muscle temperature of the observed with passive warming of a muscle does not result in biceps brachii from pulsed short-wave diathermy did not result an increase in the length at which damaging strain occurs dur- in muscle damage. We found muscle temperature was at least ing eccentric stretching.31 136 Volume 39 • Number 2 • June 2004
  • 6. The fact that our results did not support the hypothesis that 12. Szymanski DJ. Recommendations for the avoidance of delayed-onset increasing muscle temperature by passive warm-up exercise muscle soreness. Strength Cond J. 2001;23:7–13. renders the muscle less susceptible to muscle damage does not 13. Isabell WK, Durrant E, Myrer W, Anderson S. The effects of ice massage, ice massage with exercise, and exercise on the prevention and treatment detract from the potential importance of active warm-up ex- of delayed onset muscle soreness. J Athl Train. 1992;27:208–217. ercise in reducing the occurrence or severity of muscle damage 14. Yackzan L, Adams C, Francis KT. The effects of ice massage on delayed and DOMS induced by eccentric exercise. Performing general muscle soreness. Am J Sports Med. 1984;12:159–165. and specific warm-up exercise along with dynamic flexibility 15. Paddon-Jones DJ, Quigley BM. Effect of cryotherapy on muscle soreness exercises may be effective in reducing eccentric, exercise-in- and strength following eccentric exercise. Int J Sports Med. 1997;18:588– duced muscle damage and DOMS.12,32 However, further study 593. is needed to investigate how and why warm-up exercise works 16. Donley PB. Shortwave and microwave diathermy. In: Prentice WE, ed. and what is the most effective warm-up procedure to prevent Therapeutic Modalities in Sports Medicine. 2nd ed. St Louis, MO: Time Mirror/Mosby College Publishing; 1990:149–167. muscle damage and DOMS. The implications of our findings 17. Goats GC. Microwave diathermy. Br J Sports Med. 1990;24:212–218. are first that increased muscle temperature had no attenuating 18. Draper DO, Knight K, Fujiwara T, Castel JC. Temperature change in effect on the severity of muscle damage or soreness associated human muscle during and after pulsed short-wave diathermy. J Orthop with eccentric exercise. Second, performing eccentric exercise Sports Phys Ther. 1999;29:13–22. when muscles were colder than normal did not increase the 19. Lowdon BJ, Moore RJ. Determinants and nature of intramuscular tem- severity of the muscle-damage response. perature changes during cold therapy. Am J Phys Med. 1975;54:223–233. 20. Zemke JE, Andersen JC, Guion KW, McMillan J, Joyner AB. Intramus- cular temperature responses in the human leg to two forms of cryother- REFERENCES apy: ice massage and ice bag. J Orthop Sports Phys Ther. 1998;27:301– 307. 1. Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced 21. Nosaka K, Newton M, Sacco P. Delayed-onset muscle soreness does not muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24:512– reflect the magnitude of eccentric exercise-induced muscle damage. Scand 520. J Med Sci Sports. 2002;12:337–346. 2. Howell JN, Chleboun G, Conatser R. Muscle stiffness, strength loss, 22. Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle swelling and soreness following exercise-induced injury in humans. J strength and power output in human skeletal muscles. Acta Physiol Scand. Physiol. 1993;464:183–196. 1979;107:33–37. 3. Evans RK, Knight KL, Draper DO, Parcell AC. Effects of warm-up be- 23. Bigland-Ritchie B, Thomas CK, Rice CL, Howarth JV, Woods JJ. Muscle fore eccentric exercise on indirect markers of muscle damage. Med Sci temperature, contractile speed, and motoneuron firing rates during human Sports Exerc. 2002;34:1892–1899. voluntary contractions. J Appl Physiol. 1992;73:2457–2461. 4. Nosaka K, Clarkson PM. Influence of previous concentric exercise on 24. Davies CTM, Young K. Effect of temperature on the contractile properties eccentric exercise-induced muscle damage. J Sports Sci. 1997;15:477– and muscle power of triceps surae in humans. J Appl Physiol. 1983;55: 191–195. 483. 25. Meigal AY, Lupandin YV, Hanninen O. Influence of cold and hot con- ¨ 5. Rodenburg JB, Steenbeek D, Schiereck P, Bar PR. Warm-up, stretching ¨ ditions on postactivation in human skeletal muscles. Pflugers Arch. 1996; and massage diminish harmful effects of eccentric exercise. Int J Sports 432:121–125. Med. 1994;15:414–419. 26. Ranatunga KW, Sharpe B, Turnbull B. Contractions of a human skeletal 6. Sargeant AJ. Effect of muscle temperature on leg extension force and muscle at different temperatures. J Physiol. 1987;390:383–395. short-term power output in humans. Eur J Appl Physiol Occup Physiol. 27. Myrer JW, Draper DO, Durrant E. Contrast therapy and intramuscular 1987;56:693–698. temperature in the human leg. J Athl Train. 1994;29:318–322. 7. Shellock FG, Prentice WE. Warming-up and stretching for improved 28. Guyton AC. Textbook of Medical Physiology. 8th ed. Philadelphia, PA: physical performance and prevention of sports-related injuries. Sports WB Saunders Co; 1991:797–808. Med. 1985;2:267–278. 29. Wirth VJ, Van Lunen BL, Mistry D, Saliba E, McCue FC. Temperature 8. Safran MR, Garrett WE Jr, Seaber AV, Glisson RR, Ribbeck BM. The changes in deep muscles of humans during upper and lower extremity role of warmup in muscular injury prevention. Am J Sports Med. 1988; exercise. J Athl Train. 1998;33:211–215. 16:123–129. 30. Kuitunen S, Avela J, Kyrolainen H, Nicol C, Komi PV. Acute and pro- ¨ ¨ 9. Safran MR, Seaber AV, Garrett WE Jr. Warm-up and muscle injury pre- longed reduction in joint stiffness in humans after exhausting stretch- vention: an update. Sports Med. 1989;8:239–249. shortening cycle exercise. Eur J Appl Physiol. 2002;88:107–116. 10. Strickler T, Malone T, Garrett WE. The effects of passive warming on 31. Noonan TJ, Best TM, Seaber AV, Garrett WE Jr. Thermal effects on muscle injury. Am J Sports Med. 1990;18:141–145. skeletal muscle tensile behavior. Am J Sports Med. 1993;21:517–522. 11. Nosaka K, Clarkson PM. Changes in indicators of inflammation after 32. Cross KM, Worrell TW. Effects of a static stretching program on the eccentric exercise of the elbow flexors. Med Sci Sports Exerc. 1996;28: incidence of lower extremity musculotendinous strains. J Athl Train. 953–961. 1999;34:11–14. Journal of Athletic Training 137