The Contradictions of Sustainable Urban Water Management


Published on

Philip Lohrmann speaks as a representative of the civilian-layman-environmental enthusiast margin and is currently a construction project manager working out of Shanghai. Philip’s educational background is in Civil Engineering with a focus on the environmental and structural disciplines, particularly water resources. His work experience includes LEED projects in Shanghai, river restoration projects on the West Coast of the United States, and water quality studies in Indiana and Zhejiang. He has also served as a volunteer with community-led local green energy initiatives, disaster relief efforts in the wake of Hurricane Katrina, and the non-profit organization Green Empowerment which conceives and implements water, energy and bio-sphere protection projects in South America and Southeast Asia. His turnoffs are end-of-the-tailpipe solutions, end-of-the-conveyor belt quality checks, and need-of-the-moment firefighting.

Published in: Education, Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

The Contradictions of Sustainable Urban Water Management

  1. 1. The Contradictions of Sustainable Urban Water Management Philip  Lohrmann   GREEN  DRINKS  CHINA  /  14  November  2013 
  2. 2. Background – The Startling Figures - Water Resources for China     25%  of  the  world’s   average  water  per   capita   33%  of  600  cities  are   “water  scarce”           17%  “badly  scarce”  of   water   70%  Lakes  and  Rivers   are  contaminated   45%  of  Waters  graded   IV  or  worse   270  Million  People   with  no  access  to   potable  water   Shanghai 
  3. 3. Background – The Startling Figures - Water Imbalance Spatial  Imbalance     Floods  in  the  South     Drought  in  the  North     Natural  Disasters  from  1980  -­  2010   ~$26  Trillion   $62  Billion  (~3.81  Trillion  CNY)   spent  on  N-­‐S  Water  Diversion   Project   Temporal  Imbalance     Most  rain  comes  during   seasonal  downpours     ~$31  Billion  budgeted  for  3   Gorges  Dam,  still  insuf]icient  to   effectively  tame  the  Yangtze­‐the-­‐dragons-­‐thirst-­‐the-­‐ south-­‐  north-­‐water-­‐transfer-­‐project8212old-­‐plumbing-­‐for­‐Floods-­‐test-­‐Three-­‐Gorges-­‐ ~$21  Trillion   ~$157  Trillion   ~$48  Trillion  
  4. 4. Background – The Startling Figures - Flood RiskChina  overall  is  high  ]lood  risk     1998  >  238  million  people  affected  by  major   ]lood  disasters     Damage  =  30Billion  USD  (~1.8  Trillion  CNY)     1991  >  210  million  people  affected  by  major   ]looding    1931  ~  3.7  million  people  died  due  to  ]looding     Of  40  Asian  cities  most  vulnerable  to   major  ]looding,  1/2  are  in  China    Shanghai  recently  ranked  at  greatest  risk   of  major  cities  in  the  world     In  2003  17,000  residents  in  Anhui  evacuated   so  that  dikes  could  be  blown  and  ]loodwaters   released  before  joining  the  Yangtze  River      "A  1-­‐in-­‐100  year  ]lood  in  Shanghai  would  lead  to  widespread   damage,  with  serious  consequences  for  the  city,  across  China  and,   through  wider  economic  links,  for  the  whole  world,“     ~  Researcher  @  U.  of  Leeds­‐damage-­‐caused-­‐by-­‐]loods-­‐­‐08/uol-­‐frr082112.php  worldwide/­‐Shanghai-­‐]lood-­‐risk-­‐or-­‐]lood-­‐safe-­‐/en­‐Sinking-­‐Shanghai-­‐not-­‐prepared-­‐to-­‐admit-­‐climate-­‐change-­‐threat 
  5. 5. Solution! . . .?   At  the  center  of  China’s  solution  to  multiple   problems  is  Urbanization   People  in  China  without  reliable  access  to   potable  water:  ~300,000,000     Estimated  “]loating  population”:  ~250,000,000     Planned  migration  to  cities  by  2025:        ~250-­‐400  Million  .  .  .  Coincidence?    
  6. 6. Where to begin? Overdrawn   Natural   Capital  Social   Inequality  Water   Stress  Energy   Demand  Pollution  The  many  dimensions  of  water  ills  are   interconnected  in  very  complicated  ways,  a   solution  can  only  be  found  by  going  to  the  roots   of  the  problem 
  7. 7. The beginning   China’s  water  challenges  have  become  chronic   problems  over  the  centuries  due  to   mismanagement  of  natural  resources  and   continued  destruction  of  ecosystems  fueled  by   unsustainable  growth  Natural   Resource    Innovations  /   Migrations  Jevons   Paradox  Resource   Scarcity  Water  Needed  Growth  Exceed   Capacity  Industrialization  Energy  production   pollutes  water  &   consumes  ecosystems  Energy  Needed  to  get   water  Natural  Resources   consumed  to  make   energy 
  8. 8. Not only China - For Example 2007  2008  3.1  km  Watch  a  video:­‐walks 
  9. 9. Competing Tensions Energy   Industry  Consumer   Lifestyles  Water   Industry  Limited   Resources  Food   Industry  CO2   Mitigation 
  10. 10. Dow Chemical on how to achieve China’s water requirements . . . Low  Energy  Membrane  Technology     Desalination     Energy  Reducing  Technologies     Reverse  Osmosis  Membrane     Ultra-­‐]iltration  Fibers     Ion  Exchange  Resin  Beads   
  11. 11. To address China’s problems, we need a cradle-to-cradle design, brainstorm: Captures  and  stores  rainwater     Filters  rainwater  and  wastewater     Is100%  recyclable     Stabilizes  soils     Filters  airborne  pollution  including  ]ine   particulates     Is  an  appropriate  technology  that  can  be   installed  and  maintained  with  little  or  no   technical  training    
  12. 12. And some other goals with consideration for Global Climate Change: No  fossil  fuels  required  -­‐  solar  powered     Changes  carbon  dioxide  into  oxygen  gas     Production  is  completely  carbon  neutral     Captures  and  stores  carbon     Reduces  local  temperatures       Provides  shelter  from  sun,  wind,  and  rain     Regulates  temperature  &  rainfall   ]luctuations    
  13. 13. . . . And it would be nice if:                     Increases  in  value  and  becomes  more  ef]icient  with  age   Aesthetically  pleasing  and  comes  in  a  variety  of  shapes   sizes  and  colors   When  decommissioned  it  can  be  up-­‐cycled  to  become   multiple  useful  products   Compatible  with  other  hardware  platforms   Self-­‐repairing     Self-­‐reproducing   Can  produce  food  as  a  byproduct   Can  provide  habitat  for  a  variety  of  creatures   It  is  fun  for  children  and  adults   Helps  ]ight  cancer  in  a  variety  of  ways 
  14. 14. Oh, A Tree 30.5  m  (100  feet)  Other  plants  Leaves  Mulch  Humus  Earth  +  Roots  2.5  mm  of  rainfall;  1.8   m3  of  rain  captured  Can  capture  rains  or   ]lood  waters   equivalent  to  57,000   gallons  (215  m3  )  of   water  Ecosystem   
  15. 15. Oh, A Tree   Andy  Lipkis,  President  of  Tree  People,  on   how  to  solve  Los  Angeles  water  woes  Storm   Water   Pollution  Water   Supply  The   current   Approach  Flood   Control  Sanitation  Health-­‐ care  1.  Rain  provides  enough  water  to  meet   50%  of  L.A.’s  water  needs   2.  L.A.  City  Stormwater  Management     collects  and  pre-­‐treats  the  rainwater   through  engineering  measures   3.  L.A.  Country  Flood  Control  gets  all  the   rainwater  water  out  of  the  city  as   quickly  as  possible   4.  L.A.  City  pump’s  water  from  Colorado   River,  Owens  Valley,  LA  Aqueduct,   Sacramento  River  Delta,  and  others   5.  In  the  late  1990s  L.A.  was  planning  to   spend  $20  Billion  to  upgrade  the   infrastructure,  including  a  $47  Million   storm  drain  in  Sun  Valley   Neighborhood   
  16. 16. What Andy did Retro]it   Suburban   Home  to   capture  100   year  storm  Convinced   School  to  invest   in  Smart  Green   Infrastructure   Instead  of   repaving  the   parking  lot  Convinced   county  to  install   $200M  urban   community   forest  in  Sun   Valley  rather   than  a  $47M   stormdrain   Released  Second  Nature-­   the  result  of  100   Engineers    &  Architects     and  200  Scientists  and   Economists  how  Urban   Forests  can  provide  a   better,  more  sustainable   future  (It  would  save   $300M)  Read  their  story: 
  17. 17. The Urban Forest System Rain  becomes  storm   water  Storm  water  carrying   pollutants  ]lows  into   swales,  gardens,  and   lawns  First  Flush  pollutants   treated  in  underground   system  onsite  %  water   in]iltrated  Ground  water   recharge  (Future)  Smart   controls  can  divert   water  to  balance  the   system  or  purge  it   before  a  ]lood  Water  available  for   later  use  Filtered  water  goes   into  underground   cisterns 
  18. 18. Crenshaw Highschool, Los Angeles, CA The Benefit Analysis (excluding socioeconomic benefits) Total  Estimated  Cost:       $1,600,000  Total  Value/year:       $229,100  Return  Period  (assuming  5%  interest):       Less  than  9  Years 
  19. 19. Shanghai’s Water Resource Risk-Benefit Circle­‐river/water-­‐system.jpg;  Nov  2013 
  20. 20. The Development Model Extended ~100  dams  under  construction  along  the   Yangtze  and  its  tributaries  in  2013   ~$48  Trillion  Market  in  2010  for  water-­‐ related  capital  expenditures  
  21. 21. Suspended sediment discharge­‐sediments-­‐EN-­‐2.gif 
  22. 22. More water evaporates from reservoirs than is consumed by humans article46.html 
  23. 23. Damage  to  Undo   Water  Storage   function  of   China’s  forests   worth  RMB   7.5T;  3x  Value   of  the  Timber   in  those   forests  Yangtze   长江  *In  1949         **Numbers  have  increased  today  but  primarily  2nd  growth  timber  worth  only  a  fraction  of  the   original  growth      ***  Shennongjia  神农架 
  24. 24. Forests Are Good for Big Business CDP  Global  Water  Report  2012;  The  Carbon  Disclosure  Project;  Deloitte 
  25. 25. Takeaways – What can we do?   Attitudes   Think  more  critically  and  educate  yourselves  about  the  problems   (Start  by  readying  China’s  Water  Crisis  《中国水危机》,  by  Ma  Jun)    Realize  that  you  are  a  player  in  the  system,  and  own  it       Day  to  day  behavior   Reduce  consumption  of  meats  and  water-­‐intensive  crops  (check  out    Reduce  use  of  water      Reduce  use  of  electricity  (39%  of  your  water  footprint  is  for   electricity)       Action   Plant  trees,  trees,  and  more  trees,  or  donate  to  reforestation  efforts,   fungi  as  well  as  native  shrubs  and  grasses  can  keep  the  tree   company    Start  conservation  programs  in  your  of]ice  or  community,  anyone   can  do  it,  see  how  Andy  Lipkis  did  it  (    Check  out  (Arti:icial  Intelligence  for  Ecosystem   Services)  &  (InVEST  -­  INtegrated   Valuation  of  Ecosystem  Services  and  Tradeoffs  )    
  26. 26. How can our cities meet our increasing water demands Increase  ef]iciency  to  reduce  water  and   power  consumption     Retro]it  infrastructure  to  utilize  rainwater   and  prevent  pollution  of  water  resources     Mobilize  our  technical,  ]inancial,  and   creative  resources  towards  repairing  the   damage  of  the  last  600  years   
  27. 27. Synergized Efforts Energy   Industry  Circular   Consumer   Economy  Lifestyles  Water   Industry  Natural   Limited   Capital  Resources  Food   Industry  CO2   Mitigation 
  28. 28. Thank you!