Eutrophication
Upcoming SlideShare
Loading in...5
×
 

Eutrophication

on

  • 1,495 views

 

Statistics

Views

Total Views
1,495
Views on SlideShare
1,481
Embed Views
14

Actions

Likes
0
Downloads
44
Comments
0

2 Embeds 14

http://www.linkedin.com 13
https://www.linkedin.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Eutrophication Eutrophication Presentation Transcript

  • Speaker:  Drew  Day  Presenta0on  Date:  12th  Jan’12Drew  Day  is  an  environmental  toxicologist  whose  focus  is  on  water  resource  management.  He  currently  works  as  a  core  member  of  Yihua,  an  environmental  networking  pla=orm.  His  earlier  research,  work,  and  study  in  Beijing  and  Yunnan  has  led  him  to  develop  a  high  level  of  Chinese.  In  January  Mr.  Day  will  present  a  comprehensive  view  of  the  sources,  implicaEons,  and  potenEal  soluEons  to  eutrophicaEon,  an  issue  he  researched  at  Dianchi  Lake  in  Kunming.  EutrophicaEon  is  one  of  the  most  common  environmental  issues  affecEng  China’s  waterways,  and  obstacles  to  reducing  sources  and  removing  nutrient  polluEon  make  soluEons  difficult.For  any  feedback  please  contact  Drew  through  dday612@gmail.com
  • Presenta0on  Overview   1.  What  is  eutrophication,  and  what  are  its  causes  and   effects?   2.  What  is  the  present  eutrophication  situation  in  China?   3.  What  are  the  benefits  of  alleviating  eutrophication?   4.  What  methods  are  there  for  restoring  eutrophic  waters?  
  • What  Is  Eutrophica0on? Eutrophication  is  the  overenrichment  of  waters  by  nutrient   input-­‐  particularly  N  and  P  input   -­‐ This  promotes  proliferation  of  autotrophs,  which  can  lead   to  algae  blooms   The  plants  and  algae  that  bloom  cause  a  surplus  of  oxygen,   which  is  released  into  the  atmosphere  
  • What  Is  Eutrophica0on? This  oxygen  is  no  longer  available  to  be  consumed  for   decomposing  the  high  number  of  plants,  so  the   decomposers  deplete  the  remaining  oxygen   Differences  in  salinity  or  temperature  cause  stratification,   which  inhibits  oxygen  replenishment,  leading  to  dead   zones  
  • What  Is  Eutrophica0on? a a
  • Effects  of  Eutrophica0on Hypoxia  in  the  hypolimnion   Harmful  algae  blooms   Benthic  organism  mortality   Loss  of  biodiversity   Water  quality  impairment   Acid  rain  (caused  by  the  evaporation  of  NO2)   NO2 High  quantities  of  nitrates  can  lead  to  human  health  problems     (over  10  mg/L              methemoglobinemia-­‐blue  baby  syndrome)  
  • Causes  of  Eutrophica0on Fertilizers   :  Nitrates  -­‐  volatilization  (ammonia):  up  to  60%  of  nitrates  applied   as  fertilizer  are  lost  through  volatilization  (40%  is  more  common)   (MA  2005)  Surface  runoff  and  leaching  into  groundwater-­‐  on  average  20%  of   fertilizer  nitrate  lost  (MA  2005)  Phosphates  –  soil  erosion:  binds  to  the  soil  Surface  runoff  and  leaching  into  groundwater  -­‐ 60% 40% (MA  2005)  -­‐   20%  (MA  2005)  -­‐
  • Causes  of  Eutrophica0on Manure   :  More  cattle  for  meat  production  causes  more  manure  The  overuse  of  manure  to  fertilize  exacerbates  runoff  issues  Meat  production  in  China  rose  by  127%  between  1990  and  2002  (FAO   2009a)  As  of  2007,  fewer  than  10%  of  an  estimated  14,000  concentrated  animal   feeding  operations  (CAFOs)  have  installed  controls  (Ellis  2007)    1990 2002 127% FAO  2009a
  • Causes  of  Eutrophica0on Aquaculture   :  For  every  ton  of  fish,  aquaculture   operations  produce  between  42  and  66  kg   of  N  waste  and  between  7.2  and  10.5  kg  of   P  waste  (Strain  and  Hargrave  2005)  42 66
  • Causes  of  Eutrophica0on Urban  and  industrial   :  Point  source:  municipal  and  industrial  discharge  via  discrete   conveyance,  such  as  wastewater  treatment  plant  and   industrial  wastewater  discharges  Sewage  Non-­‐point  source:  stormwater  runoff  and  nitrogen  leaching   from  septic  tanks  
  • Causes  of  Eutrophica0on Fossil  fuels   :  NOx-­‐  smog  and  acid  rain  Fossil  fuel  combustion  contributes  about  22  teragrams  of  N   pollution  globally  every  year  –  about  1/5  of  the  contribution   from  synthetic  N  fertilizers  (MA  2005)  NOx-­‐    22 1/5
  • Causes  of  Eutrophica0on
  • Which  Is  More  important?-­‐  N  or  P -­‐   Wang,  H.,  &  Wang,  H.  (2009).  Mitigation  of  lake  eutrophication:  Loosen  nitrogen  control  and   focus  on  phosphorus  abatement.  Progress  in  Natural  Science,  19(10),  1445-­‐1445-­‐1451.  doi:10.1016/ j.pnsc.2009.03.009    Research  in  China  and  North  America:  multi-­‐year  comparative  research   for  more  than  40  Yangzi  River  lakes  and  long-­‐term  whole-­‐lake   experiment  in  N.  Am.  Indicates  P  is  the  key  factor  in  determining  phytoplankton  growth   regardless  of  N  concentrations  “To  mitigate  eutrophication,  it  is  not  nitrogen  but  phosphorus  that   should  be  reduced,  unless  nitrogen  concentrations  are  too  high  to   induce  direct  toxic  impacts  on  human  beings  or  other  organisms.”    “
  • What  is  the  Present  Eutrophica0on  Situa0on  Worldwide?   International  Lake  Environment  Committee  (ILEC)  –  “Survey  of   the  State  of  the  World’s  Lakes”  All  217  lakes  covered  showed  an  increase  in  eutrophication  level  in   the  past  50  years  Even  though  by  2000  nutrient  inputs  to  66  lakes  had  been   reduced,  most  are  still  more  eutrophied  than  50  years  ago ILEC -­‐“ ”  50 217  2000 66 50    
  • What  is  the  Present  Eutrophica0on  Situa0on   Worldwide?   -­‐1   -­‐1-­‐2   -­‐1 -­‐1 -­‐2
  • What  is  the  present  eutrophica0on  situa0on  in  China?   In  a  2003  survey  of  50  major  Chinese  lakes,  66%  have   eutrophic  or  hypereutrophic  conditions The  5  largest  freshwater  lakes  are  all  eutrophic  or   hypereutrophic Urban  lakes  are  nearly  all  in  a  hypereutrophic  state 2003 50 66% 5
  • What  is  the  present  eutrophica0on  situa0on  in  China?  
  • What  is  the  present  eutrophica0on  situa0on  in  China?  
  • Dianchi  Lake   400 300 200 100 0 1990                              1992                                      1994                                1996                                  1998                                    2000                                    2002   Agricultural  produc0on  value  per  unit  produc0on  area  (ten  thousand  yuan/ha.) Applica0on  of  Nitrogen  fer0lizers  per  unit  area  (tons/1000ha) Applica0on  of  phosphate  fer0lizers  per  unit  area  (tons/1000ha) Applica0on  of  pes0cide  per  unit  area  (tons/1000ha)
  • Tai  Lake  
  • What  are  the  benefits  of  allevia0ng  eutrophica0on?   Improving  the  quality  of  water  used  for  all  purposes   Increased  aesthetic  and  recreational  value  of  adjacent  land   The  restoration  of  species  important  to  local  food  chains,  thus   bolstering  the  local  fish  industry   A  reduction  of  the  amount  of  money,  capacity,  and  maintenance   needed  for  water  treatment   A  reduced  health  threat  to  the  local  population  
  • A  business  case  for  eutrophica0on  mi0ga0on   Economic  effects  of  eutrophication  and  benefits  of  reducing  eutrophication    (UNEP.  Planning  and  Management  of  Lakes  and  Reservoirs:  An  Integrated  Approach  to  Eutrophication.  2000) Effect  of  Eutrophication   Benefits  of  Reducing  Eutrophication   •Lower  costs  of  treating  water  Increased  taste  and  odour   •Happier  consumers  problems  in  water  supply   •Less  need  for  substitute  water  (e.g.,  bottled  water)   •Increased  consumption  of  water  and  differential  between  prices  of  substitutes  and  municipal   supply   •Happier  nearby  residents  Reduced  visual  and  tactile   •Increased  development  around  water  body  qualities  of  water  body           •Increased  recreation   •More  diverse  biota   •Increased  value  of  properties   •Increased  commercial  and  recreational  fishing  Increased  possibility  of  toxins   •Increased  development  of  land   •More  diverse  biota  in  water   •Increased  expenditures  on  recreation     •Prices  for   water  contact   •Increased  different  fish  caught     •Increased  number  and  value  cosystem   •Public’s  WTP  for  improved  e of  fish  caught   •Public  WTP  for  improved  ecosystem   •Reduced  nexpenditures  on  recreation   •Increased   eed  for  alternative  water  supplies  Loss  of  water  depth,  surface   •Values  of  shoreline  property  preserved  area,  and  storage  capacity   •Continued  viability  of  fisheries   •Continued  viability  of  recreation   •Avoided  costs  for  dredging  and  substitute  water  supplies  
  • What  methods  are  there  for  restoring  eutrophic  waters?   Water  treatment  coupled  with  nutrient  removal  Water  treatment  plants  Pumping  stations  to  remove  algae  Lake  and  riverbed  dredging   
  • What  methods  are  there  for  restoring  eutrophic  waters?   The  addition  of  chemicals  to  prevent   nutrient  or  algae  increases  Hypolimnetic  aeration:  prevents   nutrient  upwelling  and  increases   oxygen  in  the  hypolimnion  Addition  of  gases  to  kill  algae  –  ozone   (expensive)    –  
  • What  methods  are  there  for  restoring  eutrophic  waters?   Methods  for  restoration  of  lakes  and  reservoirs     (UNEP.  Planning  and  Management  of  Lakes  and  Reservoirs:  An  Integrated  Approach  to  Eutrophication.   2000) Method   Application   Costs  In  situ  precipitation   often  not  applicable  to  shallow  lakes   low  Removal  of  sediment   limited  to  shallow  lakes   very  high   not  recommended  Algicides   medium  Coverage  of  sediment   general   medium-­‐high   -­‐ has  only  long-­‐term  effects  for  small  lakes  Shading  by  trees   very  low   removal  of  nutrients  from  inflow  water  Wetlands   medium   only  applicable  to  lakes  with  thermocline  Aeration   high  to  very  high   -­‐ only  applicable  to  lakes  with  thermocline     medium,  high  if  P-­‐  removal  is  required  Siphoning  Biomanipulation   only  in  the  P-­‐range  0.05-­‐0.15  mg/l   usually  low   0.05-­‐0.15 / the  problem  is  moved  not  solved  Diversion   case  dependent  
  • What  methods  are  there  for  restoring  eutrophic  waters?   Public  education  and  assistance  Environmental  education  Public  Awareness  Technical  assistance   
  • What  methods  are  there  for  restoring  eutrophic  waters?   Regulations  Standards  Product/manufacturing  –  e.g.,  controlling  the  amount  of  phosphates  in  detergents  and  fertilizers  Process/design  –  e.g.,  Maryland’s  Stormwater  Management  Act  of  2007  (reducing  nutrient  runoff)  Technology/practice  –  e.g.,  enhanced  nutrient  removal  technology  for  treatment  plants  (capable   of  reducing  N  concentrations  in  wastewater  to  3  mg/L  and  P  concentrations  to  0.3  mg/L)  Effluent/emission  caps  –  e.g.,  capping  the  amount  of  N  and  P  leaving  a  watershed  (as  in   the  U.S.  Clean  Water  Act)   /  –    /  –   2007  /  –   3 / 0.3 /  /  –  
  • What  methods  are  there  for  restoring  eutrophic  waters?   Fiscal  and  Economic  Incentives  Ecotaxes  Polluter-­‐pays  tax  –  e.g.,  Denmark’s  wastewater  tax  (tax  point-­‐sources  for  every   unit  of  N,  P,  and  BOD  discharged)  and  Netherlands  nutrient  budget  fee  system  Dedicated  environmental  tax  –  e.g.,  Maryland  “flush  tax”  (tax  on  water  and   sewer  bill,  used  to  add  to  nutrient  removal  technology  in  treatment  plants)  Technologies/products/inputs  taxes  –  e.g.,  fertilizer  tax   “ ”  –     –   “ ”  / /  –  
  • What  methods  are  there  for  restoring  eutrophic  waters?    Incentives  and  subsidies  Incentive  payments,  subsidies,  low-­‐interest  loan  programs,  and  tax  credits  E.g.,  agricultural  preservation  subsidies  –  encourage  best  management  practices  E.g.,  Pennsylvania  Resource  Enhancement  and  Protection  Program  –  tax  credit  for  farmers   using  best  management  practices  to  improve  water  quality  (estimated  from  2007-­‐08  N   pollution  reduced  by  162,176  lbs  and  P  pollution  by  14,939  lbs)  E.g.,  U.S.  Clean  Water  State  Revolving  Fund  -­‐  $5  billion  per  year  in  low-­‐interest  loans  to   fund  water  quality  protection  projects  Performance-­‐based  approaches  –  e.g.,  reverse  auctions     –     –   2007 2008 162,176 14,939   –   50   –  
  • What  methods  are  there  for  restoring  eutrophic  waters?    Ecolabeling  –  encourage  ‘green’  products  Environmental  Markets  –  provide  price  signals  for  environmental   goods  Regulatory  markets  –  provide  flexibility  and  reduce  the  financial  burden   of  regulatory  compliance  E.g.,  Long  Island  Sound  Nitrogen  Credit  Exchange  in  Connecticut  –  lets   plants  meet  N  discharge  limits  by  upgrading  their  facilities  or  by   purchasing  N  offsets  from  plants  operating  below  their  discharge  limit   –   ‘ ’   –     –     –  
  • What  methods  are  there  for  restoring  eutrophic  waters?    Voluntary  markets  –  driven  by  value  placed  on  env.  good  or  service   by  buyers  E.g.,  Chesapeake  Fund  –  voluntary  nutrient  market  created  by  a   consortium  of  NGOs   –     –  
  • What  methods  are  there  for  restoring  eutrophic  waters?   Restoration  and  Protection  of  Ecosystems  Protected  areas  E.g.,  The  Danube  Delta  under  the  UNESCO  Man  and  Biosphere  Program  Land  purchases  and  conservation  easement  establishment  E.g.,  Worcester  Land  Protection  Partnership:  a  partnership  between  the  city  of  Worcester  and  the   Trust  for  Public  Land  in  which  they  identify  and  acquire  priority  watershed  land  Habitat  restoration  E.g.,  submerged  aquatic  vegetation  and  oyster  bed  restoration  in  the  Chesapeake  Bay      
  • What  methods  are  there  for  restoring  eutrophic  waters?   Restoring  flood  pulse  and  hydrological  extremes                  Cyanobacterial  blooms  in  a  temperate  river-­‐floodplain  ecosystem:  The  importance  of  hydrological   extremes.  (2011).  Aquatic  Ecology,  45(3),  335-­‐335-­‐349.
  • Thank  You