Carbon Budgetin Acacia crassicarpa pulpwood plantation in Peatlands              Workshop Enhancing Sustainability of Fore...
∆ABG - ∑E = ?ABG : above and below groundE   : emission
BG ?below ground ≈ peat masspeat mass:• depth ~ surface level variation• bulk density vs depth• depth vs subsidence
surface level variationMicrorelief of plots on Acacia Plantation in Bukit Batu, Riau                                      ...
surface level variationMicrorelief of plots on Acacia Plantation in Bukit Batu, Riau                                      ...
surface level variationMicrorelief of plots on Acacia Plantation in Sei Tapah, Jambi and SeiBaung, South Sumatra       WKS...
surface level variation  Variation of height difference of peatland surface in  measurements plots in Riau, Jambi, and Sou...
bulk density vs depth Riau, deep peat                                     Pristine Forest                                 ...
bulk density vs depth South Sumatra (shallow peat) and Jambi (moderate peat)                   A.Crassicarpa Plantation on...
Subsidence: compaction, depth, BD                                        9 years A. crassicarpa Plantation on Deep Peat   ...
Subsidence: compaction, depth, BDJambi, moderate peat                                                                     ...
AG ?above ground ≈ biomass• living trees• dead wood• litter
Emission: measurement data                        CO2 Fluxes in Riau site                   50                            ...
Emission: measurement data                   50                            CO2 Fluxes in Jambi site                       ...
Emission: measurement data                   50                        CO2 Fluxes, South Sumatra site                     ...
Emission: measurement data                                    Comparison of CO2 Fluxes in 3-yr old A. crassicarpa         ...
Emission: measurement data                               Comparison between A. Crassicarpa 3 year and without             ...
Emission: measurement data      CH4 Fluxes in Riau site                    60                                             ...
Emission: measurement data                                                                        CH4 Fluxes in Jambi site...
Emission: measurement data                                                CH4 Fluxes South Sumatra site                   ...
Year-round Fluxes of CO2 & CH4 in A. crassicarpa and MHW forest in Peatland                                               ...
Biomass Study•   Litter Fall•   Biomass Data•   Development DBH-Biomass Model•   Characteristic of Plant Biomass
Biomass study Litter Fall of Acacia crassicarpa                                                        Sei Baung, South   ...
Biomass study                                Litter Decomposition Rate of A. crassicarpa                                on...
Biomass study      Relationship Between DBH with Height and Age                 A. Crassicarpa in Riau site
Biomass study             Biomass Equation for Riau site :             a= 192.196 b= 0.763 r2= 0.972             WT= a(D^2...
Biomass study                          Biomass Equation for WKS :                                a=142.471                ...
250,000                              y = -14361x2 + 13528x - 95212                                        R² = 0.999200,00...
Biomass study               Riau Prov.               Jambi Prov.             South Sumatra Prov.  Age                     ...
Carbon Budget
Description (kg C/ha)             Year I              Year II              Year III               Year IV                Y...
Tahun I               Tahun II               Tahun III                 Tahun IV                      Tahun Vdeadwood stock...
Conclusion• Calculation of carbon budget in peatland using the model of  ∆ABG - ∑E = ? is facing uncertainty with respect ...
Conclusion• Calculation of Carbon budget of Acacia Crassicarpa  plantation on peatland using the alternative concept shows...
Upcoming SlideShare
Loading in …5
×

Carbon budget in A. crassicarpa pulpwood plantations in peatland

629 views
523 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
629
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
21
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Carbon budget in A. crassicarpa pulpwood plantations in peatland

  1. 1. Carbon Budgetin Acacia crassicarpa pulpwood plantation in Peatlands Workshop Enhancing Sustainability of Forestry Practices on Peatlands June 27, 2012, IICC Bogor Basuki Sumawinata, G. Djajakirana, Suwardi, Darmawan
  2. 2. ∆ABG - ∑E = ?ABG : above and below groundE : emission
  3. 3. BG ?below ground ≈ peat masspeat mass:• depth ~ surface level variation• bulk density vs depth• depth vs subsidence
  4. 4. surface level variationMicrorelief of plots on Acacia Plantation in Bukit Batu, Riau BBHA Plot R0742 BBHA Plot R0743 BBHA Plot R0744 Relatives Height (cm) Relatives Height (cm)Relatives Height (cm) 1100 1100 1100 900 900 900 10 m 10 m 10 m BBHA Plot R3701 BBHA Plot R3702 BBHA Plot R3703 Relatives Height (cm) Relatives Height (cm) Relatives Height (cm) 1100 1100 1100 900 900 900 10 m 10 m 10 m
  5. 5. surface level variationMicrorelief of plots on Acacia Plantation in Bukit Batu, Riau BBHA Plot R0742 BBHA Plot R0743 BBHA Plot R0744 Relatives Height (cm) Relatives Height (cm)Relatives Height (cm) 1100 1100 1100 900 900 900 10 m 10 m 10 m BBHA Plot R3701 BBHA Plot R3702 BBHA Plot R3703 Relatives Height (cm) Relatives Height (cm) Relatives Height (cm) 1100 1100 1100 900 900 900 10 m 10 m 10 m
  6. 6. surface level variationMicrorelief of plots on Acacia Plantation in Sei Tapah, Jambi and SeiBaung, South Sumatra WKS Plot J131 SBA Plot P21 Relatives Height (cm) Relatives Height (cm) 1100 1100 900 900 10 m 10 m SBA Plot P22 SBA Plot P23 Relatives Height (cm) Relatives Height (cm) 1100 1100 900 900 10 m 10 m
  7. 7. surface level variation Variation of height difference of peatland surface in measurements plots in Riau, Jambi, and South Sumatra Height BBHA/R074 BBHA/R370 WKS/J13 SBA/P2 Differences 1 2 3 4 1 2 3 1 1 2 3 (cm) 0-10 24 24 17 30 19 41 36 38 19 37 29 10-20 32 18 22 30 32 31 26 38 35 18 25 20-30 19 14 18 18 26 18 16 15 13 15 19 30-40 8 9 10 10 12 9 9 7 6 5 3 40-50 5 12 9 3 6 2 5 1 1 1 1 50-60 3 6 6 0 3 0 2 0 0 0 1 60-70 0 0 0 0 2 0 2 0 0 1 0
  8. 8. bulk density vs depth Riau, deep peat Pristine Forest BD of upper layer of the pristine forest 100% 90% 0.20 0.18 <106 µ is comparable and even slightly higher 80% 0.16 70% 0.14 1000-106 µ than of the plantation area Fraction g/cm3 60% 0.12 2000-1000 µ 50% 0.10 40% 0.08 5000-2000 µ 30% 0.06 20% 0.04 > 5000µ BD Within the depth of only the upper 1 10% 0.02 0% 0.00 m, variations can be easily measured. It (a) is much more difficult to get data at this Depth (cm) detail for the lower depth. 9 years A. crassicarpa Plantation on Deep Peat 9 years A. Crassicarpa Plantation on Deep Peat Plot Plot #1 #2 100% 0.14 100% 0.12 90% 90% 0.12 80% 0.10 80% <106 µ <106 µ 70% 0.10 70% 0.08 1000-106 µ Fracion 60% 1000-106 µ g/cm3 60% g/cm3 0.08 Fraction 50% 2000-1000 µ 50% 0.06 2000-1000 µ 40% 0.06 40% 5000-2000 µ 30% 0.04 5000-2000 µ 30% 0.04 > 5000µ 20% 0.02 > 5000µ 20% 0.02 10% 10% BD BD 0% 0.00 0% 0.00 0-10 10-2020-3030-4040-5050-6060-80 (b) Depth (cm) Depth (cm)
  9. 9. bulk density vs depth South Sumatra (shallow peat) and Jambi (moderate peat) A.Crassicarpa Plantation on Moderate Peat (ex overlogged area) The value of the upper layer BD 100% 90% 0.14 0.12 <106µ in South Sumatra (shallow peat) 80% 70% 0.10 1000-106µ is higher than the locations with Fraction g/cm3 60% 0.08 2000-1000µ 50% 40% 0.06 5000-2000µ deeper peat but the dominance 30% 0.04 20% 10% 0.02 >5cmµ of coarse fraction is still high. BD 0% 0.00 This is maybe an indication of Depth (cm) (a) the compaction of the entire depth. A.Crassicarpa Plantation on Shallow Peat (ex over drained and burn area) 100% 0.25 90% <100µ 80% 0.20 70% 1000-100µ Fraction g/cm3 60% 0.15 2000-1000µ 50% 40% 0.10 5000-2000µ 30% 20% 0.05 >5000µ 10% BD 0% - (b) Depth (cm)
  10. 10. Subsidence: compaction, depth, BD 9 years A. crassicarpa Plantation on Deep Peat 4 2 300 Riau, deep peat 0 250 Rainfall (mm/week) -2 0 1 2 3 4 5 6 7 8 9 10 11 12 200 -4Subsidence (cm) -6 Pristine Forest (MTH) WT (cm) SM (%) -8 150 4 800 -10 100 2 -12 700 -14 0 Rainfall (mm/week) -16 50 -2 0 1 2 3 4 5 6 7 8 9 10 11 12 600 Subsidence (cm) -18 -4 500 WT (cm) SM (%) -20 0 -6 Month -8 400 Rainfall A. Crassicarpa plot 1 A. Crassicarpa plot 2 -10 300 A. Crassicarpa plot 3 A. Crassicarpa plot 4 Water Table -12 Soil Moisture -14 200 -16 100 -18 -20 0 6 years A. crassicarpa Plantation on Deep Peat Month 4 300 Rainfall Pristine Forest 2 Water Table Soil Moisture 0 250 Rainfall (mm/week) -2 0 1 2 3 4 5 6 7 8 9 10 11 12 Subsidence (cm) -4 200 WT (cm) -6 SM (%) -8 150 -10 -12 100 -14 -16 50 -18 -20 0 Month Rainfall A. crassicarpa plot 1 and 2 A. crassicarpa plot 3 Water Table Soil Moisture
  11. 11. Subsidence: compaction, depth, BDJambi, moderate peat Subsidence over varied between plots even in the A. crassicarpa Plantation on Moderate Peat same peatland characteristic and management Secondary Forest (ex logged-over area) 650 2 650 Rainfall (mm/week) 0 550 Subsidence (cm) -2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 450 Rainfall (mm/week) Subsidence (cm) -2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 450 WT (cm) Sm % -4 350 WT (cm) SM (%) 250 -7 -6 250 50 -8 150 -10 50 -12 -150 -12 -50 Month Rainfall Pipe A Pipe B Month Water table Soil Moisture Rainfall Pipe A (a) Water Table Soil Moisture (b)South Sumatra, shallowpeat 1 year A. crassicarpa on shallow peat 4 years A. crassicarpa on shallow peat 4 (ex- over drain and burnt area) 350 4 (ex- over drain and burnt area) 350 2 Rainfall (mm/minggu) 300 2 300 Rainfall (mm/minggu) Subsiden ce (cm) 0 250 0 Subsidence (cm) 250 WT (cm) -2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 SM( %) -2 0 2 4 6 8 WT( cm) 200 SM ( %) -4 200 150 -4 -6 150 100 -6 -8 100 50 -8 -10 -10 50 -12 0 -12 0 Month Month Rainfall Plot 1 Plot 2 Rainfall Plot 1 Plot 2 Water Table Soil Moisture Soil Moisture Wate Table
  12. 12. AG ?above ground ≈ biomass• living trees• dead wood• litter
  13. 13. Emission: measurement data CO2 Fluxes in Riau site 50 0 45 50 40 100 35 150 30 g C-CO2/m2/day Rainfall (mm/week) 25 200 Water Table (cm) 20 250 15 300 10 350 5 0 400 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 Week Rainfall A.crassicarpa 3yr A. crassicarpa 1 yr Pristine Forest Water Table A. crassicarpa 3 yr Water Table A. crassicarpa 1 yr Water Table Pristine Forest CO2 fluxes in 3-year old are greater than in 1-year old A. crassicarpa The highest CO2 fluxes are recorded in week 7 while the lowest water table measurement recorded in week 30. This indicates no direct correlation between CO2 fluxes and water level. In a non stagnated condition, CO2 fluxes from pristine forest is quite high
  14. 14. Emission: measurement data 50 CO2 Fluxes in Jambi site -50 45 0 40 50 35 100 30 C-CO2g/m2/day 150 Rainfall (mm/week) 25 200 WT (cm) 20 250 15 300 10 5 350 0 400 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 Week Rainfall A. crassicarpa 3 years Secondary Forest A. mangium 2 years (Mineral Soil) Water Table A.crass 3 y Water Table Secondary Forest CO2 fluxes in mineral soil are less than in peat soil CO2 fluxes from forest plantation almost similar compared to secondary forest In week 35 – 51, the water level increased, however CO2 fluxes remained high
  15. 15. Emission: measurement data 50 CO2 Fluxes, South Sumatra site 0 45 50 40 100 35 Rainfall (mm/week) C-CO2g/m2/day Water table (cm) 150 30 25 200 20 250 15 300 10 350 5 0 400 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 week Rainfall A. crassicarpa 4 yr A. crassicarpa 4 yr (-R-L) A. crassicarpa 1 yr Abandoned Paddy Field (Mineral Soil) Water Table A. crassicarpa 4 yr Water Table A. crassicarpa 1 yr Water Table Abandoned Paddy Field CO2 fluxes in 4-yr old Acacia (with litter & fine roots) are > 4-yr old Acacia (without litter and fine roots) > 1-yr old Acacia > abandoned paddy field In 1-yr old Acacia, the highest water level recorded in week 39 – 41, however the CO2 fluxes are at the lowest level
  16. 16. Emission: measurement data Comparison of CO2 Fluxes in 3-yr old A. crassicarpa 60 With and Without Litter and Fine Roots 0 50 100 40 200 Water Table (cm) Soil Mostuire (%) g C-CO2/m2/day 30 300 20 400 10 500 0 600 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 Week Water Table A. crassicarpa 3 years A.crassicarpa 3yr A.crassicarpa 3 yr -R-L Soil MoistureHighest CO2 fluxes were observed when Soil Moisture is between Field Capacity andWilting Point. And CO2 fluxes were observed at the lowest level when Soil Moisture is lower than Wilting Point, during week 19-30 when the water level is at minimum level.The difference between CO2 fluxes from Accacia plants with and without litter and roots reflectedthe difference of respiration speed and root ‘s exudate.
  17. 17. Emission: measurement data Comparison between A. Crassicarpa 3 year and without 60 root & litter in Jambi site 0 55 50 50 100 45 150 Water Table (cm) Soil Mostuire (%) g C-CO2/m2/day 40 200 35 250 30 300 25 350 20 400 15 450 10 500 5 550 0 600 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 Week Water table A.crassicarpa 3 yr A.crassicarpa 3 yr (-R-L) Soil Mostuire A.crassicarpa 3 yr Soil Mostuire A.crassicarpa 3 yr (-R-L)
  18. 18. Emission: measurement data CH4 Fluxes in Riau site 60 0 50 50 40 100 30 150 20 Rainfall (mm/week) Water Table (cm) 200 mgC /m2/day 10 0 250 -10 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 300 -20 Week 350 -30 400 -40 -50 450 -60 500 Rainfall A. crassicarpa 3 years A. crassicarpa 3 years -R-L A. crassicarpa 1 year Pristine Forest Water Table Pristine Forest Water Table A. crassicarpa There is no correlation between CH4 fluxes with water table level
  19. 19. Emission: measurement data CH4 Fluxes in Jambi site 70 -50 60 0 50 50 mg C-CH4/m2/day 40 100 CH(mm/week) WT (cm) 30 150 20 200 10 250 0 300 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 -10 350 -20 Week 400 Rainfall A. crassicarpa 3 years Secondary Forest A. mangium 2 years (mineral soil) Water Table A. crassicarpa 3 yr Water Table Secondary Forest
  20. 20. Emission: measurement data CH4 Fluxes South Sumatra site 50 0 45 50 40 35 100 30 Rainfall (mm/week) C-CH4 mg/m2/day Water Table (cm) 150 25 20 200 15 250 10 5 300 0 350 -5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 Week -10 400 Rainfall A.crassicarpa 4 yr A.crassicarpa 4 yr (-R-L) A. crassicarpa 1 yr Abandoned Paddy Field Water Table A. crassicarpa 4 yr Water Table A. crassicarpa 1 yr Water Table Abandone Paddy Field
  21. 21. Year-round Fluxes of CO2 & CH4 in A. crassicarpa and MHW forest in Peatland CH4 Fluxes CO2 FluxesLand Characteristics Landuse (age) (kg C- (ton C-CO2 ha-1y-1) CH4ha-1y-1)Mineral soil Acacia mangium, 2y 20.23 -2.12Mineral soil Acacia mangium, 2y –R-L 11.58 -9.25Mineral soil Eucalyptus, sp 2y 18.10 -4.94Mineral soil Abandoned paddy field 15.97 1.31Peat soil, deep Acacia crassicarpa 1y 35.77 -7.33Peat soil, deep Acacia crassicarpa 3y 52.43 3.86Peat soil, deep Acacia crassicarpa 3y –R-L 26.04 7.62Peat soil, deep Pristine forest 33.04 5.42Peat soil, deep Pristine forest –R-L 20.31 5.15Peat soil, deep Open area (no vegetation) 11.06 -6.67Peat soil, moderate Acacia crassicarpa 3y 34.31 12.94Peat soil, moderate Acacia crassicarpa 3y –R-L 27.16 8.30Peat soil, moderate Secondary (logged-over) forest 36.52 8.30Peat soil, shallow Acacia crassicarpa 4y 37.59 -9.25Peat soil, shallow Acacia crassicarpa 4y–R-L 26.38 14.83Note: -R-L: without fine root and litter
  22. 22. Biomass Study• Litter Fall• Biomass Data• Development DBH-Biomass Model• Characteristic of Plant Biomass
  23. 23. Biomass study Litter Fall of Acacia crassicarpa Sei Baung, South Month Bukit Batu, Riau Sei Tapah, Jambi Sumatra Februari 2011 93.59 46.42 19.83 Maret 71.43 37.85 55.33 April 52.17 31.79 45.83 Mei 48.49 121.98 34.33 Juni 45.48 55.40 45.67 Juli 40.91 30.39 49.50 Agustus 43.36 54.41 31.00 September 51.26 38.96 40.83 Oktober 48.52 31.71 29.33 Nopember 48.66 27.36 29.83 Desember 40.57 76.42 40.33 Januari 2012 31.04 86.33 Total (g/m2/y) 637.54 583.73 508.17 Total (ton/ha/y) 6.38 5.83 5.08
  24. 24. Biomass study Litter Decomposition Rate of A. crassicarpa on the Top Layer at Riau, Jambi, and South Sumatra sites 100 90 80 70 Biomass (%) 60 50 40 30 20 35% remains 10 0 0 1 2 3 4 5 6 7 8 9 10 11 Month Riau BBHA Jambi WKS South Sumatra SBA
  25. 25. Biomass study Relationship Between DBH with Height and Age A. Crassicarpa in Riau site
  26. 26. Biomass study Biomass Equation for Riau site : a= 192.196 b= 0.763 r2= 0.972 WT= a(D^2*H)^b WT : Total Weight Wr : Root Weight Wk : Knot Weight Ws : Stem Weight Wb : Branch Weight Wl : Leaves Weight
  27. 27. Biomass study Biomass Equation for WKS : a=142.471 WT= a(D^2*H)^b b= 0.544 r2= 0.494 140 80% error= 7.674 120 70% 60% 100 50% Total weight 80 40% %W 60 30% 40 20% 20 10% 0 0% 0 1 1 2 2 3 3 4 4 5 5 Age WT (kg) Wr (%) Wk (%) Ws (%) Wb (%) Wl (%) WT : Total Weight Wr : Root Weight Wk : Knot Weight Ws : Stem Weight Wb : Branch Weight Wl : Leaves Weight
  28. 28. 250,000 y = -14361x2 + 13528x - 95212 R² = 0.999200,000 y = -18648x2 + 14015x - 80660 R² = 0.962150,000 y = -14008x2 + 10451x - 51986 R² = 0.969100,000 BBHA WKS SBA 50,000 - 0 1 2 3 4 5 6
  29. 29. Biomass study Riau Prov. Jambi Prov. South Sumatra Prov. Age Total Total Total(Years) Popula- Biomass/ Popula- Biomass/ Popula- Biomass/ Biomass Biomass Biomass tion tree (kg) tion tree (kg) tion tree (kg) (ton) (ton) (ton) 1 1,933 12.78 24.7 1,767 20.67 36.5 1,800 22.33 40.2 2 2,267 53.04 120.2 1,800 56.95 102.5 1,600 75.95 121.5 3 1,967 91.72 180.4 1,700 84.12 143.0 1,533 121.66 186.5 4 1,700 126.53 215.1 1,233 105.79 130.4 1,033 160.46 165.8 5 1,411 157.94 222.9 1,010 123.66 124.9 821 194.17 159.4
  30. 30. Carbon Budget
  31. 31. Description (kg C/ha) Year I Year II Year III Year IV Year VDeadwood stock from last year - 11,006 22,319litter stock from last year 140 749 1,312 1,711litter fall this year 400 1,999 3,000 3,577 3,706deadwood this year 13,758 16,892 22,822E0 11,000 11,000 11,000 11,000 11,000Decomposition of litter 260 1,391 2,437 3,178 3,521Decomposition of deadwood 2,752 5,580 9,028 260 1,391 5,188 8,757 12,549 Total C decomposition 11260 12,391 16,188 19,757 23,549litter stock 140 749 1,312 1,711 1,896Deadwood stock - 11,006 22,319 36,113 Total stock 140 749 12,318 24,030 38,009HarvestPlant remain 44,571Root remain 2,500Reject wood/plant 11,143shrub 1,000 budget 96,222 55,000 Sequestra-Total C lost (kg/ha/5 y= 83,085 tion 41,222
  32. 32. Tahun I Tahun II Tahun III Tahun IV Tahun Vdeadwood stock from last year - 3,365 22,453litter stock from last year 268 847 1,346 1,429litter fall this year 766 2,150 3,000 2,736 2,620deadwood this year - 4,206 24,702 13,788E0 11000 11,000 11000 11000 11000Decomposition of litter 498 1,572 2,500 2,654 2,025Decomposition of deadwood - - 841 5,613 7,248 498 1,572 3,341 8,267 9,273Total C decomposition 11,498 12,572 14,341 19,267 20,273litter stock 268 847 1,346 1,429 2,025deadwood stock - - 3,365 22,453 28,993Total C stock 268 847 4,711 23,882 31,018HarvestPlant remain Kg C/ha 24,979Root remain 2,500Reject wood/plant 6,245Shrub 1,000 budget 65,742 55000Total C loss: 77,952 kg C/ha/5y sequestration 10,742
  33. 33. Conclusion• Calculation of carbon budget in peatland using the model of ∆ABG - ∑E = ? is facing uncertainty with respect to below ground carbon stock measurement/estimation due to great variation in land surface and BD.• An alternative concept of carbon budget calculation is by considering all possibility of C sequestration from produced biomass and the emission of just from the peat material decomposition.
  34. 34. Conclusion• Calculation of Carbon budget of Acacia Crassicarpa plantation on peatland using the alternative concept shows that the carbon budget tends to be positive depending on the plantation management, in that the highest the production the highest the sequestration.• With a constant emission from peat decomposition, then high production as the reflection of best fit management is the measure for reducing emission.

×