Vector Tools

1,217 views
1,111 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,217
On SlideShare
0
From Embeds
0
Number of Embeds
50
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Vector Tools

  1. 1. VECTOR TOOLS By Abdul Ghaffar
  2. 2. Contents <ul><ul><li>Vector spaces and affine spaces 4.1, 4.2 (Self Study) </li></ul></ul><ul><ul><li>Operations with vectors 4.2.1 (Self Study) </li></ul></ul><ul><ul><li>Linear combination of vectors 4.2.2 </li></ul></ul><ul><ul><li>Dot product 4.3 (Self Study </li></ul></ul><ul><ul><li>Angle between two vectors 4.3.2 (Self Study) </li></ul></ul><ul><ul><li>Cross product 4.4 (Self Study) </li></ul></ul><ul><ul><li>Point normal for a line and plane 4.5.6 </li></ul></ul><ul><ul><li>Polygon intersection problems 4.8 </li></ul></ul><ul><ul><li>Scalar triple product A2.2.2 </li></ul></ul>
  3. 3. Review of Vector Difference b/w two points is a vector V=Q-P Sum of a point and a vector is a point Q=P+V
  4. 4. Operations with vectors
  5. 5. Linear combination of vectors <ul><li>A Linear combination of the m vectors v1.v2,…,vm is a vector form </li></ul><ul><li>w=a1v1+a2v2+…..+a m v m where a are scalars. </li></ul><ul><li>It will also be an affine combination if </li></ul><ul><li>a1+a2+….+am=1 </li></ul><ul><li>and a convex combination if all coefficients are nonnegative </li></ul><ul><li>=> ai >= 0, for i=1,….,m </li></ul>
  6. 6. Linear combination of vectors <ul><li>Set of all convex combinations of two vectors v1 and v2 is the set of all vectors </li></ul><ul><li>v =(1-a)v1+av2 or v=v1+a(v1-v2) </li></ul><ul><li>For three vectors the convex combination will be </li></ul><ul><li>v = a1v1 + a2v2 + (1-a1-a2 ) v3 </li></ul><ul><li>as shown as dark region in part b of fig. </li></ul>
  7. 7. The Dot Product <ul><li>The Dot Product of d of two n-dimensional vectors V=(v1,v2,…,vn) and W=(w1,w2,…wn) is denoted as V.W and has the value </li></ul><ul><li>Angle between two vectors is calculated as </li></ul><ul><li>b.c=|b||c| cos(  ) </li></ul>
  8. 8. Chapter 4: Vector Tools <ul><li>4.5 Representation of Key Geometric Objects </li></ul><ul><ul><li>4.5.1 Coordinate Systems and Coordinate Frames </li></ul></ul><ul><ul><ul><li>Points: location, no size, no direction </li></ul></ul></ul><ul><ul><ul><li>Vectors: size, direction, no location </li></ul></ul></ul><ul><ul><ul><li>A coordinate system is located in a world . </li></ul></ul></ul><ul><ul><ul><li>Coordinate frame: specific origin  , and 3 unit vectors a,b,c . </li></ul></ul></ul>
  9. 9. Chapter 4: Vector Tools <ul><ul><ul><li>v = v 1 a + v 2 b + v 3 c </li></ul></ul></ul><ul><ul><ul><li>Vector p-  = p 1 a + p 2 b + p 3 c </li></ul></ul></ul><ul><ul><ul><li>P =  + p 1 a + p 2 b + p 3 c where v and p are some numbers </li></ul></ul></ul><ul><ul><li>Homogeneous Representation of Point, Vector </li></ul></ul><ul><ul><ul><li>v = ( a,b,c,  ) </li></ul></ul></ul><ul><ul><ul><li>P = ( a,b,c,  ) </li></ul></ul></ul><ul><ul><ul><li>Note: OpenGL uses 4D homogeneous coordinates by default. </li></ul></ul></ul>
  10. 10. 4.5.4 Tweening (morphing) <ul><ul><li>P1(t)=(1-t)Ai+tBi </li></ul></ul>
  11. 11. Chapter 4: Vector Tools <ul><li>4.5.6 Representing Lines and Planes </li></ul><ul><ul><li>Line, line segment, ray </li></ul></ul><ul><ul><li>Parametric representation of line: L(t) = C + b t </li></ul></ul><ul><ul><li>Point normal form for line (implicit) </li></ul></ul><ul><ul><ul><li>Given line L through C and B, what is point normal form? </li></ul></ul></ul><ul><ul><ul><li>(B-C)  . (R-C) = 0 where R any point on line. </li></ul></ul></ul>
  12. 12. Chapter 4: Vector Tools <ul><li>Planes in 3D Space </li></ul><ul><ul><li>Parametric Representation of a Plane </li></ul></ul><ul><ul><ul><li>P(s,t) = C + a s + b t or </li></ul></ul></ul><ul><ul><ul><li>P(s,t) = sA + tB + (1-s-t)C </li></ul></ul></ul>
  13. 13. Point normal form <ul><li>For line </li></ul><ul><li>fx + gy = 1 </li></ul><ul><li>or (f,g).(g,y)=1 as dot Product </li></ul><ul><li>=> point normal form will be </li></ul><ul><li>n. (R-C) = 0 </li></ul><ul><li>where n can be found as </li></ul><ul><li>n = b  = B-C </li></ul>
  14. 14. Point normal form <ul><li>For Plane </li></ul><ul><ul><li>If R=(x,y,z) is any point on the plane </li></ul></ul><ul><ul><li>And n=(nx,ny,nz) is normal to the plane at point B then </li></ul></ul><ul><ul><li>n. ( R – B) = 0 </li></ul></ul><ul><ul><li>Which is the required form for the plane </li></ul></ul>
  15. 15. Chapter 4: Vector Tools <ul><li>Planar Patches </li></ul>
  16. 16. Chapter 4: Vector Tools <ul><li>4.6 Finding the Intersection of 2 Line Segments </li></ul><ul><ul><li>Parametric representations: </li></ul></ul><ul><ul><ul><li>AB(t) = A + bt </li></ul></ul></ul><ul><ul><ul><li>CD(u) = C + du where t and u are is times </li></ul></ul></ul><ul><ul><li>Intersection of lines AB and CD will be at time u=t , as </li></ul></ul><ul><ul><li>A + b t = C + d u, or b t = c + d u, or d  . b t = d  . c </li></ul></ul>Vectors : b=A-B d=C-D c=A-C
  17. 17. Chapter 4: Vector Tools <ul><ul><li>Case 1: d  . b not zero </li></ul></ul><ul><ul><ul><li>t = ( d  . c)/(d  . b) </li></ul></ul></ul><ul><ul><ul><li>u = ( b  . c)/(d  . b) </li></ul></ul></ul><ul><ul><ul><li>Intersection point I = A + (( d  . c)/(d  . b))b if 0 < t,u < 1 </li></ul></ul></ul><ul><ul><li>Case 2: d  . b zero : Lines are parallel </li></ul></ul><ul><li>4.6.1 Application of Line Intersections: Circle through 3 points : Selfstudy. </li></ul>
  18. 18. Intersections of Lines with Planes; Clip <ul><li>Line parametric representation; plane point normal form. </li></ul><ul><ul><li>As point normal form of the plane is </li></ul></ul><ul><ul><li>n.(P-B)=0 </li></ul></ul><ul><ul><li>If line hits the plane at P then P = A+ct hit </li></ul></ul><ul><ul><li>=> n.( A+ct hit – B) =0 </li></ul></ul><ul><ul><li>=> t hit = ( n . (B-A))/( n . c ) </li></ul></ul>
  19. 19. Chapter 4: Vector Tools <ul><ul><li>If n . c > 0 : ray aimed along with normal </li></ul></ul><ul><ul><li>If n . c < 0 : ray aimed counter to normal </li></ul></ul><ul><ul><li>If n . c = 0 : ray parallel to line </li></ul></ul><ul><li>4.8 Polygon Intersection Problems </li></ul>
  20. 20. Chapter 4: Vector Tools <ul><ul><li>Is given point P inside or outside the object? </li></ul></ul><ul><ul><li>Where does a given ray R first intersect the object? </li></ul></ul><ul><ul><li>Which part of given line L lies inside object, and which part outside? </li></ul></ul><ul><li>4.8.1 Convex Polygons and Polyhedra </li></ul><ul><ul><li>Convex polygon described by bounding lines </li></ul></ul><ul><ul><li>Convex polyhedron described by bounding planes </li></ul></ul>
  21. 21. Chapter 4: Vector Tools <ul><ul><li>Inside halfspace contains all points of polygon; outside halfspace shares no points with polygon. </li></ul></ul><ul><li>4.8.2 Ray Intersection, Clipping for Convex Polygons </li></ul><ul><ul><li>The Intersection problem: Use ray/line intersection solution, and calculate </li></ul></ul><ul><ul><ul><li>Entering hit point A+ c t in and </li></ul></ul></ul><ul><ul><ul><li>Exiting hit point A + c t out </li></ul></ul></ul><ul><ul><ul><li>Ray inside polygon for [t in ,t out ] </li></ul></ul></ul>
  22. 22. The Clipping problem <ul><ul><ul><li>A’ = A + c max(0,t in ) </li></ul></ul></ul><ul><ul><ul><li>C’ = A + c min(t out ,1) </li></ul></ul></ul><ul><ul><ul><li>To find t in , t out , consider each bounding line of P and calculate intersection with A+ c t. </li></ul></ul></ul><ul><ul><ul><ul><li>Note: Bounding lines stored in point normal form </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Note: n is outward-pointing normal. </li></ul></ul></ul></ul>
  23. 23. The Clipping problem <ul><li>Init candidate interval to [0,1] </li></ul><ul><li>For each bounding line, find hit time and establish whether entering or exiting ray using n . c . </li></ul><ul><ul><li>If entering, set t in = max (t in , t hit ). </li></ul></ul><ul><ul><li>If exiting, set t out = min(t out ,t hit ). </li></ul></ul><ul><li>Segment from A+ c t in to A+ c t out lies inside P. </li></ul>
  24. 24. Cyrus-Beck clipping:
  25. 25. Cyrus-Beck clipping:

×