0
Volatilitat i Correlació
Gerard Albà
Xavier Noguerola
FME UPC – febrer 2014
Tècniques quantitatives pels Mercats Financers
1. Introducció
2. Volatilitat
2.1 Volatilitat històrica.
2.2 Volatilitat im...
Tècniques quantitatives pels Mercats Financers

3. Correlació
3.1 Introducció. Covariància i correlació.
3.2 Correlació hi...
Tècniques quantitatives pels Mercats Financers

3.1 Introducció. Covariància i correlació.
• La correlació és una mesura d...
Tècniques quantitatives pels Mercats Financers

3.1 Introducció. Covariància i correlació.
• Covariància entre dues variab...
Tècniques quantitatives pels Mercats Financers

3.1 Introducció. Covariància i correlació. Propietats.
• Linealitat del co...
Tècniques quantitatives pels Mercats Financers

3.1 Introducció. Covariància i correlació. Coeficient beta.
• Beta entre d...
Tècniques quantitatives pels Mercats Financers

3.1 Introducció. Covariància i correlació. Exemples.
• El càlcul de la vol...
Tècniques quantitatives pels Mercats Financers

3.1 Introducció. Covariància i correlació. Exemples.
•

L’estructura de de...
Tècniques quantitatives pels Mercats Financers

3.1 Introducció. Covariància i correlació. Exemples.
Distribució Normal Mu...
Tècniques quantitatives pels Mercats Financers

3.1 Introducció. Covariància i correlació. Exemples.
Distribució Normal Bi...
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita.
• La correlació històrica ρ n de les...
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita. Estimadors.
• Per a mostres petites ...
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita. Intervals de confiança.
• Mitjançant...
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita. Intervals de confiança.
Exemple.
• ρ...
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita. Intervals de confiança.
Exemple.
• O...
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita.
Freqüència del mostreig i correlació...
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita.
Tendència temporal de la correlació....
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita.
• Degut a la falta de derivats sobre...
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita.
• Si es suposa una mateixa correlaci...
Tècniques quantitatives pels Mercats Financers

3.2 Correlació històrica i implícita. Skew de correlació.
• Igual que amb ...
Tècniques quantitatives pels Mercats Financers

3.3 Models de correlació.
• Models economètrics similars als utilitzats pe...
Tècniques quantitatives pels Mercats Financers

3.3 Models de correlació. Model EWMA.

σ u2,n
σ v2,n
Covu ,v ,n
− 1 ≤ λu ,...
Tècniques quantitatives pels Mercats Financers

3.3 Models de correlació. Model GARCH (Generalized
Auto-Regressive Conditi...
Tècniques quantitatives pels Mercats Financers

3.4 Trading de correlació.
• Realitzar trades de correlació és una mica me...
Tècniques quantitatives pels Mercats Financers

3.4 Trading de correlació.
• En el mercat existeixen diferents interessats...
Tècniques quantitatives pels Mercats Financers

3.4 Trading de correlació. Riscos en la negociació.
• A més dels riscos qu...
Tècniques quantitatives pels Mercats Financers

3.5 Inconvenients de la correlació.

• Si la variància d’X o Y no és finit...
Tècniques quantitatives pels Mercats Financers

3.6 Altres mesures de dependència.
• La correlació no és l’única manera de...
Tècniques quantitatives pels Mercats Financers

3.6 Altres mesures de dependència. Exemple: Opció
Composite mitjançant Còp...
Tècniques quantitatives pels Mercats Financers

3.6 Altres mesures de dependència. Exemple: Opció
Composite mitjançant Còp...
Tècniques quantitatives pels Mercats Financers

3.6 Altres mesures de dependència. Exemple: Opció
Composite mitjançant Còp...
Tècniques quantitatives pels Mercats Financers

3.7 Efectes de la correlació en la valoració i càlcul de
gregues.
• Quan e...
Tècniques quantitatives pels Mercats Financers

3.7 Efectes de la correlació en la valoració i càlcul de
gregues. Exemple:...
Tècniques quantitatives pels Mercats Financers

3.7 Efectes de la correlació en la valoració i càlcul de
gregues. Exemple:...
Tècniques quantitatives pels Mercats Financers

3.8 Inconvenients en l’ús de paràmetres no observables.
Provisions o FVA.
...
Tècniques quantitatives pels Mercats Financers

3.8 Inconvenients en l’ús de paràmetres no observables.
Provisions o FVA.
...
Tècniques quantitatives pels Mercats Financers

3.8 Inconvenients en l’ús de paràmetres no observables.
Provisions o FVA. ...
Tècniques quantitatives pels Mercats Financers

3.8 Inconvenients en l’ús de paràmetres no observables.
Provisions o FVA. ...
Tècniques quantitatives pels Mercats Financers

3.8 Inconvenients en l’ús de paràmetres no observables.
Provisions o FVA. ...
Tècniques quantitatives pels Mercats Financers

3.8 Inconvenients en l’ús de paràmetres no observables.
Provisions o FVA. ...
Upcoming SlideShare
Loading in...5
×

Volatility models and their applications in Finance (4/4) - Handouts: Volatilitat i correlació_2014-4

132

Published on

Introduction to Volatility models and their applications in Finance. Part 4 of 4.

Published in: Economy & Finance
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
132
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
5
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "Volatility models and their applications in Finance (4/4) - Handouts: Volatilitat i correlació_2014-4"

  1. 1. Volatilitat i Correlació Gerard Albà Xavier Noguerola FME UPC – febrer 2014
  2. 2. Tècniques quantitatives pels Mercats Financers 1. Introducció 2. Volatilitat 2.1 Volatilitat històrica. 2.2 Volatilitat implícita. 2.3 Volatilitat implícita vs real. Sessió Pràctica 1: Gregues. Gestió del risc d’una opció. Gestió d’un llibre de derivats. Informació de mercat sobre volatilitat. 2.4 Models de volatilitat. 2.4.1 Models de volatilitat discrets: EWMA, GARCH. 2.4.2 Models de volatilitat i valoració d’opcions: Volatilitat. Local, Volatilitat Estocàstica i Jump diffusion 2.5 Trading de volatilitat. Swaps de volatilitat. 2
  3. 3. Tècniques quantitatives pels Mercats Financers 3. Correlació 3.1 Introducció. Covariància i correlació. 3.2 Correlació històrica i implícita. 3.3 Models de correlació. 3.4 Trading de correlació. 3.5 Inconvenients de la correlació. 3.6 Altres mesures de dependència. Exemple: Opció Composite. 3.7 Efectes de la correlació en la valoració i càlcul de gregues. 3.8 Inconvenients en l’ús de paràmetres no observables. Provisions. 3
  4. 4. Tècniques quantitatives pels Mercats Financers 3.1 Introducció. Covariància i correlació. • La correlació és una mesura de la dependència lineal entre vàries variables aleatòries. • La correlació s’aplica en la valoració d’opcions multi-asset (cistelles i/o models híbrids), la gestió de carteres i en l’anàlisi de riscos. • S’utilitza per descriure i modelitzar la dependència (lineal) entre actius (equities, bons, tipus d’interès, tipus de canvi, índexs d’inflació, commodities,...). 4
  5. 5. Tècniques quantitatives pels Mercats Financers 3.1 Introducció. Covariància i correlació. • Covariància entre dues variables aleatòries X i Y: [ Cov( X , Y ) = E ( X − µ X )(Y − µY ) ] • Coeficient de correlació lineal: és una normalització de la covariància (aquesta no està acotada), que permet comparar grau de dependència entre diversos parells de v.a ρ XY Cov ( X , Y ) = σ X ⋅σ Y 5
  6. 6. Tècniques quantitatives pels Mercats Financers 3.1 Introducció. Covariància i correlació. Propietats. • Linealitat del coeficient de correlació: ρ (αX + β , γY + δ ) = sgn(αγ ) ρ ( X , Y ) Conseqüències: – Correlació invariant per splits d’accions. – Correlació invariant per pagaments de dividends. • Correlació no invariant respecte transformacions no lineals: ρ (T ( X ), T (Y ) ) ≠ ρ ( X , Y ) Conseqüència: – Correlació de rendibilitats diferent a correlació logaritmes rendibilitats. 6
  7. 7. Tècniques quantitatives pels Mercats Financers 3.1 Introducció. Covariància i correlació. Coeficient beta. • Beta entre dos actius: β XY ρ XY ⋅σ X Cov( X , Y ) = = σY Var (Y ) • Correspon a la pendent de la regressió lineal de la variable X respecte la variable Y. • El coeficient beta és útil pel càlcul de ratis de cobertura per un actiu mitjançant un altre instrument financer (similar a la delta en les opcions). • També s’utilitza com a indicador del nivell de risc en alguns models de valoració d’actius com el CAPM (Capital Asset Pricing Model). 7
  8. 8. Tècniques quantitatives pels Mercats Financers 3.1 Introducció. Covariància i correlació. Exemples. • El càlcul de la volatilitat d’una cistella d’actius es fa mitjançant les volatilitats individuals i les covariàncies/correlacions: N ∑w w ρ σ σ σP = = i , j =1 N ∑ i , j =1,i ≠ j i j ij i j = N wi w j Cov(ri , rj ) + ∑ w σ i =1 2 i 2 i 8
  9. 9. Tècniques quantitatives pels Mercats Financers 3.1 Introducció. Covariància i correlació. Exemples. • L’estructura de dependència dins d’una cistella d’actius ha de ser tal que la matriu de correlacions sigui semi-definida positiva: M = (ρ ij ) xT ⋅ M ⋅ x ≥ 0 ∀ x ∈ ℜ n • Altrament, es podria construir una cartera amb ponderacions de manera que la cistella tingués variància negativa!! • La condició es pot verificar mitjançant la descomposició de Txoleski: M = AT ⋅ A amb A triangular inferior amb la diagonal formada per elements positius. Si la descomposició no és possible la M no és semi-definida positiva. 9
  10. 10. Tècniques quantitatives pels Mercats Financers 3.1 Introducció. Covariància i correlació. Exemples. Distribució Normal Multivariant X = [X 1 ,  , X n ] ~ N n (µ , Σ ) T µ = [µ1 ,, µ n ]T Σ ∈ ℜn x n • Distribució multivariant amb distribucions univariants marginals normals per les variables aleatòries individuals X 1 ,  X n • Funció de densitat conjunta: f X ( x1 ,  xn ) = • 1 (2π ) 2 Σ n 1 e − 1 ( x − µ )T Σ −1 ( x − µ ) 2 2 Permet calcular preus d’opcions europees sobre cistelles de diversos actius: Best-of, Worst-of calls, puts,... en un entorn tipus Black-Scholes. 10
  11. 11. Tècniques quantitatives pels Mercats Financers 3.1 Introducció. Covariància i correlació. Exemples. Distribució Normal Bivariant • Funció de densitat conjunta: 2  σx  Σ=  ρσ xσ y f ( x, y ) = 1 2πσ xσ y 1 − ρ 2 e ρσ xσ y   2 σy   1 − 2 1− ρ 2 ( ( 2   (x−µx ) + y−µ y 2  σ2 σy x  )  )2 − 2 ρ( x − µ x )( y − µ y )  σ xσ y   11
  12. 12. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. • La correlació històrica ρ n de les rendibilitats u i v de dues variables de mercat S1 i S2 a l’instant n es pot calcular a partir d’una mostra d’m observacions anteriors mitjançant l’estimador: ρn = Covn (u , v) σ u ,nσ v ,n amb σ u2,n 1 m 2 = ∑ un −i m i =1 σ v2,n 1 m 2 = ∑ vn − i m i =1 1 m Covn (u , v) = ∑ un −i ⋅ vn −i m i =1 12
  13. 13. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. Estimadors. • Per a mostres petites (m<10) existeixen estimadors útils: – Estimador estadístic aproximat no esbiaixat de Fisher:  1− ρ 2  ˆ  ρ F = ρ 1 +    2m      – Estimador estadístic aproximat no esbiaixat de Olkin i Pratt: ˆ ρ OP   1− ρ 2   = ρ 1 +   2(m − 3)        13
  14. 14. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. Intervals de confiança. • Mitjançant la transformada de Fisher es poden obtenir intervals de confiança per al valor de la correlació: – Transformada de Fisher: Z= 1 1+ ρ  ln  2 1− ρ    – La distribució de Z és aproximadament normal, amb variància: 2 σZ = 1 n−3 – Interval de confiança: tanh(tanh −1 ( ρ ) − 1 1 t ) < ρ < tanh(tanh −1 ( ρ ) + t) n−3 n−3  c +1 t = Φ −1    2  amb Φ funció distribució normal i c nivell de significació o confiança. 14
  15. 15. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. Intervals de confiança. Exemple. • ρ=58%, n=52 1  1 + 0.58  Z = ln  = 0.6625 2  1 − 0.58  2 σZ = 1 = 0.0204 52 − 3 • Interval 95% de confiança (1.96 σ ): 0.6625 − ( 0.0204 ⋅1.96) < Z < 0.6625 + ( 0.0204 ⋅1.96) tanh(0.3826) < ρ < tanh(0.9424) 0.3826 < Z < 0.9424 36.49% < ρ < 73.63% 15
  16. 16. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. Intervals de confiança. Exemple. • Observem que l’interval de confiança no és simètric: ρ − 21.51% < ρ < ρ + 15.63% • Si l’aproximació ρ és gran en valor absolut, es té major certesa en l’interval (degut a que la correlació està acotada superior i inferiorment). • Per exemple, una correlació històrica estimada en 0 amb dades setmanals durant tres anys (n=3 x 52), dóna un interval de confiança amb una amplada del 16%. 16
  17. 17. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. Freqüència del mostreig i correlació sincronitzada. • Sovint es calcula covariància usant dades de tancament, que no són del mateix instant (no sincronització degut a diferents horaris de cotització). • En general, d’aquesta manera es subestima la correlació. Es pot veure que per estimar la correlació sincronitzada usant dades no sincronitzades és preferible que usar dades amb menor freqüència d’observació (tancaments setmanals o mensuals enlloc de diaris). • RiskMetrics calcula la correlació sincronitzada a partir de dades de rendibilitats no sincronitzades segons l’expressió: ρU ,V ,t = • Cov (U t , Vt −1 ) + Cov (U t −1 , Vt ) + Cov (U t , Vt ) σ U ,t σ V ,t PROBLEMA: La matriu de variàncies-covariàncies segons aquest mètode pot resultar no definida positiva. I les correlacions poden ser no acotades per 1. 17
  18. 18. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. Tendència temporal de la correlació. • Degut a la major globalització dels mercats financers i de les interaccions entre ells, les últimes dècades s’observa un augment de la correlació entre índexs de renda variable (no així amb les volatilitats). 18
  19. 19. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. • Degut a la falta de derivats sobre correlació en mercats organitzats, normalment la correlació implícita es calcula a partir dels preus de mercat d’opcions sobre cistella d’actius o índex σB = N ∑ i , j =1,i ≠ j N wi w jσ iσ j ρ ij + ∑ wi2σ i2 i =1 • Vàries maneres: – Correlació mitjana igual per tots els parells. – Matriu de correlacions històrica més una pertorbació (igual per tots els parells) o un cert percentil de la correlació històrica. 19
  20. 20. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. • Si es suposa una mateixa correlació implícita per a tots els parells, s’obté l’expressió: ρI = 2 σ B − ∑iωiσ i2 (∑ ω σ ) − ∑ ω σ 2 i i i 2 i i 2 i • Si la correlació està suficientment allunyada de 0 (>0.20) i si el nombre de membres de la cistella (o índex) és suficientment elevat (>20), es pot usar l’expressió aproximada: 2 σB ρI ≈ 2 (∑iωiσ i ) O equivalentment: σ B ≈ ρ I ⋅ volatilitat mitjana ponderada components 20
  21. 21. Tècniques quantitatives pels Mercats Financers 3.2 Correlació històrica i implícita. Skew de correlació. • Igual que amb les volatilitats, la correlació depèn del nivell de l’actiu subjacent, i no només del temps a venciment de l’opció. • A més, també s’observa un augment de correlacions en mercats baixistes i disminució en mercats alcistes. 21
  22. 22. Tècniques quantitatives pels Mercats Financers 3.3 Models de correlació. • Models economètrics similars als utilitzats per a la volatilitat (EWMA, GARCH) són utilitzats per l’estimació del nivell de correlació. • En general, els models apliquen diferents pesos a observacions (major pes a les més recents) per a estimar variàncies i covariàncies futures. • Degut a la seva complexitat (falta d’opcions de correlació en mercats organitzats que permetin la seva calibració, gran quantitat de parells de correlació que incrementen la quantitat de paràmetres...), els models continus són menys utilitzats per a la correlació. 22
  23. 23. Tècniques quantitatives pels Mercats Financers 3.3 Models de correlació. Model EWMA. σ u2,n σ v2,n Covu ,v ,n − 1 ≤ λu , λv , λu ,v ≤ 1 2 = λuσ u2,n −1 + (1 − λu )un −1 2 = λvσ v2,n −1 + (1 − λv )vn −1 = λu ,v Covu ,v ,n −1 + (1 − λu ,v )un −1vn −1 • Uns valors de λ elevats impliquen reacció més lenta a dades actuals, mentre que un λ baix implica major sensibilitat. • Per prediccions, s’usa un λ elevat per a llarg termini, i un λ baix per a curt termini. • RiskMetrics usa λ=0.94 per VaR. 23
  24. 24. Tècniques quantitatives pels Mercats Financers 3.3 Models de correlació. Model GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) • L’EWMA n’és un cas particular. • Incorpora variància i covariància mitjanes a llarg termini (Vu, Vv, Vu,v) i la possibilitat de reversió a la mitjana. 2 σ u ,n 2 σ v,n = Covu ,v, n αi + βi + γ i = =1 = 2 2 γ uVu + α u u n −1 + β uσ u ,n −1 2 2 γ vVv + α v vn −1 + β vσ v,n −1 γ u ,vVu ,v + α u ,v u n −1vn −1 + β u ,v Covu ,v,n −1 • A diferència del GARCH per a volatilitats, el mercat no acostuma a usar GARCH per correlacions degut a la dificultat en calibrar paràmetres i a que no s’observa amb tanta claredat la reversió a la mitjana. 24
  25. 25. Tècniques quantitatives pels Mercats Financers 3.4 Trading de correlació. • Realitzar trades de correlació és una mica menys directe que amb el cas de la volatilitat, degut a la menor quantitat de productes en mercats organitzats disponibles. • La major part dels trades de correlació són OTC o productes sintètics elaborats a partir d’opcions vanilla. • Els principals instruments per a negociar la correlació són: – Correlation Swaps: Similar als Variance swaps però per a correlació. – Trades de dispersió: Productes similars als swaps de correlació però per a cistelles d’actius. Es tracta d’un producte lligat a l’evolució de la correlació així com al de la volatilitat. – Productes sintètics: Productes formats per combinacions d’opcions vanilla i/o subjacent que permeten apostar a una certa visió de mercat sobre la correlació. 25
  26. 26. Tècniques quantitatives pels Mercats Financers 3.4 Trading de correlació. • En el mercat existeixen diferents interessats en negociar correlació: – Inversors: En mercats baixistes augmenta la correlació, reduint els beneficis de la diversificació. En mercats alcistes, es redueix la correlació, reduint el benefici potencial de la cartera. En certa manera, l’inversor està curt de correlació i pot tenir interès en operar amb productes de correlació. – Hedge Funds: La correlació permet dur a terme estratègies no direccionals i/o arbitratges. – Traders de derivats: Molts productes per inversors individuals comercialitzats (opcions sobre cistelles) provoquen que els llibres de derivats tinguin exposició a la correlació. – Trading de dispersió: Qualsevol trader que tingui una certa visió de mercat sobre l’evolució futura de la correlació pot usar els trades de dispersió per dur a terme la seva visió. – Arbitratges: A vegades la correlació implícita d’una cistella és més gran que 1. Això proporciona una oportunitat d’arbitratge (comprar opcions sobre els components individuals de la cistella ponderant segons pes en cistella i vendre opció sobre la cistella). 26
  27. 27. Tècniques quantitatives pels Mercats Financers 3.4 Trading de correlació. Riscos en la negociació. • A més dels riscos que implica especular sobre qualsevol actiu de mercat, fer-ho sobre la correlació té alguns riscos afegits: – La correlació es mou amb la volatilitat: La major part de factors que afecten a la volatilitat també afecten a la correlació. Això fa que en productes en que suposadament la volatilitat no hi té cap efecte, quan aquesta canviï, el valor del producte també ho faci. – Canvis de les condicions de mercat: Tot i l’estreta relació entre la volatilitat i la correlació a vegades la correlació canvia sense que ho faci l’entorn de volatilitat (com s’ha observat les darreres èpoques amb l’increment de correlació entre tots els mercats). – Risc mark-to-market: Si un producte de correlació es cancel·la abans de venciment existeix el risc de que sigui difícil acordar un preu per a l’operació degut a la poca liquiditat del mercat de correlació. – Risc de reconstitució: Quan un producte es basa en les ponderacions d’un cert índex existeix el risc de que els components o pesos de l’índex canviïn durant la vida del producte. 27
  28. 28. Tècniques quantitatives pels Mercats Financers 3.5 Inconvenients de la correlació. • Si la variància d’X o Y no és finita, la correlació no està definida (inconvenient en fat-tails: mercats emergents, situacions de crash de mercat,...). • Correlació zero no implica independència de les v.a (Sí que és cert pel cas normal multivariant). • La correlació no és invariant per transformacions no lineals. 28
  29. 29. Tècniques quantitatives pels Mercats Financers 3.6 Altres mesures de dependència. • La correlació no és l’única manera de mesurar dependència estocàstica entre actius, n’existeixen d’altres. • Algunes alternatives a l’ús del coeficient de correlació de Pearson són: – Coeficients no paramètrics (Correlació de rangs. Útils quan les v.a. no segueixen una distribució normal): • Spearman Rank-Order Correlation • Kendall’s Tau – Còpules: • Còpula de Gauss • Còpula de Gumbel • Còpula de Frank 29
  30. 30. Tècniques quantitatives pels Mercats Financers 3.6 Altres mesures de dependència. Exemple: Opció Composite mitjançant Còpula Gaussiana. • Les còpules són procediments per a crear l’estructura de probabilitats conjuntes de diverses variables aleatòries a partir de les distribucions marginals de cada una. • Donat un vector aleatori ( X 1 ,..., X n ), suposem que només coneixem les funcions de distribució marginals FX 1 ,..., FX n i necessitem la funció de densitat conjunta FX1 ,... X n . • La funció de distribució conjunta (en principi desconeguda) s’aproxima amb l’anomenada funció de Còpula C. • Podríem dir que bàsicament, una funció de Còpula és una funció de distribució en [0,1]n amb marginals uniformes en [0,1] . 30
  31. 31. Tècniques quantitatives pels Mercats Financers 3.6 Altres mesures de dependència. Exemple: Opció Composite mitjançant Còpula Gaussiana. • Suposem que volem valorar una opció call Composite amb payoff en temps T: g (ST , X T ) = max(ST ⋅ X T − K ,0) amb S el preu del subjacent, X el tipus de canvi i K l’Strike de l’opció. • Sabem que el preu del derivat és DF ⋅ Ε[g (ST , X T )] • Mitjançant una còpula tenim: ∂ ∂ C (u , v ) dudv Ε[g (ST , X T )] = ∫ ∫ g F (u ), F (v ) 0 0 ∂u ∂v 1 1 ( −1 S −1 X ) 31
  32. 32. Tècniques quantitatives pels Mercats Financers 3.6 Altres mesures de dependència. Exemple: Opció Composite mitjançant Còpula Gaussiana. • Amb la còpula Gaussiana tenim: ϕ X ,Y , ρ (Φ −1 (u ), Φ −1 (v )) ∂ ∂ C (u , v ) = ϕ (Φ −1 (u ))⋅ ϕ (Φ −1 (v )) ∂u ∂v on Φ és la funció de probabilitat acumulada de la normal estàndard, ϕés la funció de densitat de la normal estàndard i ϕ X ,Y ,ρ és la funció de densitat de la normal estàndard bivariant amb correlació ρ , definida per:  1 x 2 + y 2 − 2 ρxy exp −  2 1− ρ 2  ϕ X ,Y , ρ (x, y ) = 2π 1 − ρ 2 ( ( ) )    32
  33. 33. Tècniques quantitatives pels Mercats Financers 3.7 Efectes de la correlació en la valoració i càlcul de gregues. • Quan es té un derivat sobre una cistella d’actius és necessari considerar la correlació entre ells. Això fa que a més dels paràmetres usuals de les opcions (volatilitat, tipus d’interès, dividends,...) s’hagi de considerar l’efecte de la correlació. • Existiran productes en els que la correlació tindrà poca importància però n’hi haurà d’altres en els que serà l’element més determinant del preu (com la volatilitat en les opcions plain vanilla sobre un actiu). • A més, la presència de correlació provoca que apareguin noves gregues (correlation vega, gregues creuades,...) que hauran de ser tingudes en compte en la cobertura. 33
  34. 34. Tècniques quantitatives pels Mercats Financers 3.7 Efectes de la correlació en la valoració i càlcul de gregues. Exemple: Opció digital. • • En una opció digital sobre un sol subjacent, el principal factor que determina el seu preu és la volatilitat i l’skew de volatilitat. Quan es tracta d’una digital sobre una cistella d’actius (paga el cupó si tots els subjacents estan per sobre (opció call) o per sota (opció put) de l’strike) la correlació entre ells hi juga un paper determinant. 35% 30% 25% 20% 15% 10% 5% 0% -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 Prima d’una opció digital sobre una cistella de 3 subjacents segons el valor de la correlació 34
  35. 35. Tècniques quantitatives pels Mercats Financers 3.7 Efectes de la correlació en la valoració i càlcul de gregues. Exemple: Opció digital. • A més de la sensibilitat a la correlació, pel fet de tenir una cistella d’actius com a subjacent, el nombre de gregues es multiplica: – 3 deltes (una per cada actiu). – 3 gammes directes (les usuals) – 3 gammes creuades (sensibilitat de cada delta quan canvien els altres actius). – 3 vegues (una per cada actiu). – ... • Això fa que la gestió d’un llibre de correlació sigui molt complicat pel fet de disposar d’un major nombre de magnituds a controlar i per la dificultat de gestionar la cobertura de la correlació. 35
  36. 36. Tècniques quantitatives pels Mercats Financers 3.8 Inconvenients en l’ús de paràmetres no observables. Provisions o FVA. • Com hem vist amb la correlació, sovint es treballa amb paràmetres que són difícils d’obtenir a partir de dades de mercat (i per tant no són estimables sota la condició de no arbitratge). • Per intentar tractar aquests casos es poden prendre diferents solucions segons la situació: – Fixar el paràmetre a mà a partir de les visions d’un equip amb suficient criteri i experiència. – Modelitzar el paràmetre (estimar-lo a partir de dades històriques). – Estimar-ho a partir d’altres paràmetres sí observables.... • A més d’això, a l’hora de valorar els derivats es poden usar models en els que es pot no descriure bé el producte i per tant, cometre cert error. 36
  37. 37. Tècniques quantitatives pels Mercats Financers 3.8 Inconvenients en l’ús de paràmetres no observables. Provisions o FVA. • En alguns casos, l’error que es pot arribar a cometre pot ser mínim, però en d’altres pot arribar a ser bastant important. En aquests casos es fa necessari considerar una quantitat que s’assumeix com a pèrdua per tal de cobrir futures pèrdues causades pel model. A aquestes quantitats de diners se les anomena provisions o també Fair Value Adjustments (FVA). • Es poden considerar provisions per tot allò que es consideri adequat “provisionar”: – – – – Risc de model. Risc de paràmetres. Risc de liquiditat. ... • La metodologia del càlcul de provisions ha de ser un valor de consens amb tots els participant de mercat (departaments de negoci i de riscos) ja que és un valor destinat a prevenir riscos i que va directament a pèrdues. 37
  38. 38. Tècniques quantitatives pels Mercats Financers 3.8 Inconvenients en l’ús de paràmetres no observables. Provisions o FVA. Exemple. Paràmetres de calibració. • Suposem que s’utilitza el model de volatilitat de Heston per a valorar un producte i que per a fer més ràpida la calibració dels paràmetres es fixa a 25% el valor mitjà de la volatilitat a llarg termini. • Suposem que es té un interval de confiança d’entre el 20% i el 30% per a la volatilitat a llarg termini i històricament s’han observat uns valors màxim i mínim de 15% i 35%. • Es creu que el nostre producte té una sensibilitat d’un -0,1% en prima per cada +1% de canvi en la volatilitat a llarg termini. • Possibles provisions podrien ser: – – – – 0,1%*(30-25)=0,5% del nominal. 0,1%*(35-25)=1% del nominal. Una quantitat fixada del 2%. ... 38
  39. 39. Tècniques quantitatives pels Mercats Financers 3.8 Inconvenients en l’ús de paràmetres no observables. Provisions o FVA. Exemple. Paràmetres model valoració. • Suposem un producte valorat amb un model que considera correlacions entre el tipus d’interès a curt termini, a llarg termini i un actiu de renda variable. • Actualment s’està usant un valor fixat a mà per a cada correlació igual a 0,95 entre tipus a curt i a llarg, 0,1 entre tipus a curt i equity i -0,2 entre tipus a llarg i equity. • En aquest cas, com que coneixem el rang en que es pot moure la correlació, per molt conservador que es sigui, no tindria sentit considerar provisions superiors a l’obtinguda en el pitjor dels casos. 39
  40. 40. Tècniques quantitatives pels Mercats Financers 3.8 Inconvenients en l’ús de paràmetres no observables. Provisions o FVA. Exemple. Risc de model. • Suposem un producte que paga la revalorització asiàtica d’un índex de commodities. • Per tal de valorar el producte, l’entitat usa una aproximació de la mitjana asiàtica en la que suposa que sota aquella aproximació el subjacent segueix un moviment brownià i és aplicable la fórmula de Black-Scholes, tot i que hi ha indicis clars de que aquesta hipòtesi és més que dubtosa. • En aquest cas la provisió podria obtenir-se a partir de la comparació amb un altre model més “correcte” (volatilitat local o volatilitat estocàstica) i aplicar una provisió igual (o superior) al valor més conservador obtingut amb altres models. 40
  41. 41. Tècniques quantitatives pels Mercats Financers 3.8 Inconvenients en l’ús de paràmetres no observables. Provisions o FVA. Exemple. Risc de cobertura. • Suposem una opció sobre una cistella. Degut a la dificultat a cobrir la correlació el trader decideix realitzar la cobertura de l’opció sense cobrir el risc de correlació ja que el preu de venda és superior al preu del producte en el pitjor escenari de correlació. • Gràcies a que la correlació està acotada, en aquest cas la provisió podria ser la totalitat de les pèrdues que es podrien ocasionar si es complís el pitjor escenari de mercat per a la correlació (no passaria el mateix amb la volatilitat). • Això sí, s’hauria de veure les implicacions sobre la resta de gregues (un valor erroni de correlació pertorba el resultat de la cobertura. 41
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×