Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Methanol Plant Equipment List and Duty (kW)
Name Description Duty (kW)
B-301A Pre-reformer Fired Heater (main coil) 43202
...
VULCAN SYSTEMS METHANOL PLANT
PFD’s
CASE STUDY#08270414
GBH ENTERPRISES, LTD.
WWW.GBHENTERPRISES.COM
HYDRODESULFURIZATION PFD
GBH ENTERPRISES, LTD.
WWW.GBHENTERPRISES.COM
SATURATOR PFD
GBH ENTERPRISES, LTD.
WWW.GBHENTERPRISES.COM
ATR & AGHR REFORMING PFD
GBH ENTERPRISES, LTD.
WWW.GBHENTERPRISES.COM
(MUG) MAKE UP GAS COOLING PFD
GBH ENTERPRISES, LTD.
WWW.GBHENTERPRISES.COM
SYNTHESIS PFD
GBH ENTERPRISES, LTD.
WWW.GBHENTERPRISES.COM
DISTILLATION PFD
GBH ENTERPRISES, LTD.
WWW.GBHENTERPRISES.COM
1- COLUMN DISTILLATION PFD
GBH ENTERPRISES, LTD.
WWW.GBHENTERPRISES.COM
Process Streams: Base Case
Stream S-101 S-102 S-103 S-104 S-105 S-106 S-201 S-202 S-203 S-204 S-205 S-206 S-207 S-301 S-30...
REFORMING
Name S-301 S-302 S-303 S-304 S-305 S-305A S-306 S-308
Temperature [C] 420.0 500.4 450.0 713.2 1050.0 1059.4 579....
(AGHR) Autothermal Gas Heated Reformer Output
Stream S-301 S-302 S-303 S-304 S-305
Temperature C 450.0 50.0 709.7 1050.0 5...
1-Column Distillation
Name S-601 S-602 S-603 S-604 S-605 S-606 S-607 S-608 S-609 S-610
Temperature [C] 49.3 50.0 150.3 59....
Distillation
Stage Temperature
liquid from
Temperature
vapor to
Pressure Heat duty Liquid flow Vapor flow Feed Draw Mass f...
Distillation
Stage Temperature
liquid from
Temperature
vapor to
Pressure Density liquid
from
Density
vapor to
Viscosity
li...
Purge Gas Scrubber 2 ft diameter based on 1.5" metal Pall rings and 3 te/hr of scrubbing water
Vapor to:
Tray Mass Flow [k...
VULCAN SYSTEMS METHANOL PLANT
TECHNOLOGY
(ATR) AUTO THERMAL REFORMING AND
(AGHR) ADVANCED GAS HEATED REFORING
CASE STUDY#0...
Process Concept for Synthesis Gas Production by
Adiabatic Prereforming and Autothermal Reforming
WWW.GBHENTERPRISES.COM
TYPICAL THE AUTOTHERMAL LAYOUT
WWW.GBHENTERPRISES.COM
WWW.GBHENTERPRISES.COM
Autothermal Reformer
WWW.GBHENTERPRISES.COM
ATR Model Simulations
WWW.GBHENTERPRISES.COM
ATR Synthesis Gas Properties
WWW.GBHENTERPRISES.COM
Advanced Gas Heated Reformer
WWW.GBHENTERPRISES.COM
WWW.GBHENTERPRISES.COM
• Part of major component
combined with the sheath
tubeplate
• Low alloy plate P4 group
materials
• Machined Fabrication
•...
 Part of major component
combined with catalyst
tubeplate sub-assembly
 Low alloy plate P4 group
materials
 Machined Fa...
 Major element of the AGHR
 Large Fabrication, critical
machined features
 Support platform for the bundle
 Key item w...
 Fabricated tube component
with laser welded fins.
 High tolerance required, needs
to fit precisely with
corresponding c...
 Fabricated tube
component
 High tolerance required
on outside & inside
diameters to achieve fit
with corresponding
comp...
WWW.GBHENTERPRISES.COM
WWW.GBHENTERPRISES.COM
 Large plate
fabrication.
 Grillage aperture
centres to be in line
with tube array.
 High level of accuracy
required
WW...
WWW.GBHENTERPRISES.COM
WWW.GBHENTERPRISES.COM
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutd...
Upcoming SlideShare
Loading in …5
×

METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) AUTO THERMAL REFORMING AND (AGHR) ADVANCED GAS HEATED REFORING

1,578 views
1,417 views

Published on

METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY

CASE STUDY#08270414

Contents
Contents
1 Introduction
2 Autothermal Reforming
2.1 Process Description
3 Gas Heated Reforming (GHR)
CASE STUDY #08270414
4 Plant Equipment List
5 Combined Reforming – ATR / AGHR PFD’s
6 Process Stream Descriptions
7 Combined Reforming Simulation Results*
8 AGHR Output Simulation Results
9 Single Column – Distillation
10 Distillation Column Profiles
Hysys Output*
Aspen Output
11 Scrubbers Simulation Results
12 ATR / AGHR Design Considerations
APPENDIX
FIGURES
Figure 1 Conventional Small Scale Steam Methane Reformer Design
Figure 2 Compact, Tubular, Small Scale Steam Methane Reformer Designed for Fuel Cell Applications, with Convective Heat Transfer
TABLES
Table I Comparison between Different Reformer Concepts
Table 2 Advantages and Disadvantages for Different
Synthesis Gas Technologies
Table 3: Small-Scale Steam Methane Reforming for Syn Gas Generation
Table 4: Small-Scale Autothermal Reformers for SynGas Generation
Table 5: Small-Scale Partial Oxidation for SynGas Generation
Table 6: Small-Scale Methanol Steam Reforming for SynGas Generation
Table 7: Small-Scale [Ammonia Cracking, Sorbent Enhanced
Reforming, Ion Transport Membranes, Catalytic Cracking of Methane, Plasma Reformer] for SynGas Generation

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,578
On SlideShare
0
From Embeds
0
Number of Embeds
11
Actions
Shares
0
Downloads
62
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) AUTO THERMAL REFORMING AND (AGHR) ADVANCED GAS HEATED REFORING

  1. 1. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com GBH Enterprises, Ltd. METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) AUTO THERMAL REFORMING AND (AGHR) ADVANCED GAS HEATED REFORING CASE STUDY#08270414 Process Information Disclaimer Information contained in this publication or as otherwise supplied to Users is believed to be accurate and correct at time of going to press, and is given in good faith, but it is for the User to satisfy itself of the suitability of the Product for its own particular purpose. GBHE gives no warranty as to the fitness of the Product for any particular purpose and any implied warranty or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented by law. GBHE accepts no liability for loss, damage or personnel injury caused or resulting from reliance on this information. Freedom under Patent, Copyright and Designs cannot be assumed.
  2. 2. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Contents Section 1 Introduction 2 Autothermal Reforming 2.1 Process Description 3 Gas Heated Reforming (GHR) CASE STUDY #08270414 4 Plant Equipment List 5 Combined Reforming – ATR / AGHR PFD’s 6 Process Stream Descriptions 7 Combined Reforming Simulation Results* 8 AGHR Output Simulation Results 9 Single Column – Distillation 10 Distillation Column Profiles Hysys Output* Aspen Output 11 Scrubbers Simulation Results 12 ATR / AGHR Design Considerations *400% PDF Magnification Required
  3. 3. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com APPENDIX FIGURES Figure 1 Conventional Small Scale Steam Methane Reformer Design Figure 2 Compact, Tubular, Small Scale Steam Methane Reformer Designed for Fuel Cell Applications, with Convective Heat Transfer TABLES Table I Comparison between Different Reformer Concepts Table 2 Advantages and Disadvantages for Different Synthesis Gas Technologies Table 3: Small-Scale Steam Methane Reforming for Syn Gas Generation Table 4: Small-Scale Autothermal Reformers for SynGas Generation Table 5: Small-Scale Partial Oxidation for SynGas Generation Table 6: Small-Scale Methanol Steam Reforming for SynGas Generation Table 7: Small-Scale [Ammonia Cracking, Sorbent Enhanced Reforming, Ion Transport Membranes, Catalytic Cracking of Methane, Plasma Reformer] for SynGas Generation
  4. 4. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com 1 INTRODUCTION For heavy natural gas and oil-associated gases, the required stoichiometric number cannot be obtained by pure autothermal reforming, even if all hydrogen available is recycled. For these applications, the VULCAN SYSTEMS COMBINED REFORMING concept, proposes autothermal and advanced gas heated reforming as an economically and technically viable option, in generating synthesis gas for methanol plants. A methanol plant with natural gas feed can be divided into three main sections. In the first part of the plant natural gas is converted into synthesis gas. The synthesis gas reacts to produce methanol in the second section, and methanol is purified to the desired purity in the tail-end of the plant. The capital cost of large scale methanol plants is substantial. The synthesis gas production including compression and oxygen production when required may account for 60% or more of the investment. In many plants today either tubular steam reforming or two-step reforming (tubular steam reforming followed by autothermal or oxygen blown secondary reforming) is used for the production of synthesis gas. Stand-alone Autothermal Reforming (ATR) at low steam to carbon (S/C) ratio is reportedly the preferred technology for large scale plants by maximizing the single line capacity and minimizing the investment. ATR combines substoichiometric combustion and catalytic steam reforming in one compact refractory lined reactor to produce synthesis gas for production of more than 10,000 MTPD of methanol. The ATR operates at low S/C ratio, thus reducing the flow through the plant and minimizing the investment. The ATR produces a synthesis gas well suited for production of both fuel grade and high purity methanol. This case study describes the benefits of using ATR and AGHR for synthesis gas production for large scale production of methanol; (ATR) Autothermal Reforming with (AGHR) Advanced Gas Heated Reforming, with emphasis on performance simulation, of a single line capacity.
  5. 5. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com 2 Autothermal Reforming (ATR) 2.1. Process Description This process combines partial oxidation and steam reforming in one vessel, where the hydrocarbon conversion is driven by heat released in the POX reaction. Developed in the late1950’s by Haldor Topsøe and Société Belge de l’Azote the process is used for methanol and ammonia production. Both light and heavy hydrocarbon feed stocks can be converted. In the latter case, an adiabatic pre-reformer is required. In this process a preheated mixture of natural gas, steam and oxygen is fed through the top of the reactor. In the upper zone, partial oxidation proceeds at a temperature of around 1200°C. After that, the mixture is passed through a catalyst bed, where final reforming reaction takes place. The catalyst destroys any carbon formed at the top of the reactor. The outlet temperature of the catalyst bed is between 850 and 1050°C. In autothermal reforming, a hydrocarbon feed (methane or a liquid fuel) is reacted with both steam and air to produce a hydrogen-rich gas. Both the steam reforming and partial oxidation reactions take place. For example, with methane CH4 + H2O ↔ CO + 3 H2 Δh = +206.16 kJ/mol CH4 (1) CH4 + 1/2 O2 -> CO + 2 H2 Δh° = -36 MJ/kmol CH4 With the right mixture of input fuel, air and steam, the partial oxidation reaction supplies all the heat needed to drive the catalytic steam reforming reaction. Unlike the steam methane reformer, the autothermal reformer requires no external heat source and no indirect heat exchangers. This makes autothermal reformers simpler and more compact than steam reformers, and it is likely that autothermal reformers will have a lower capital cost. In an autothermal reformer all the heat generated by the partial oxidation reaction is fully utilized to drive the steam reforming reaction. Thus, autothermal reformers typically offer higher system efficiency than partial oxidation systems, where excess heat is not easily recovered. The main advantages of ATR are a favorable H2/CO ratio (1.6 to 2.6), reduction of emissions due to internal heat supply, a high methane conversion, and the possibility to adjust the syngas composition by changing the temperature of the reaction. However, it requires an oxygen source.
  6. 6. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com The capital costs for autothermal reforming are lower than those of the SMR plant by 25%, as reported by Haldor Topsøe. Operational costs, however, are the same or even higher due to the need to produce oxygen. A recent study reported a capital-cost reduction of 35%, but an 8%-increase in operational costs for the ATR technology in comparison to the SMR process. ATR technology is commercially available, but still has limited commercial experience. The main licensors are Haldor Topsøe, Lurgi, Johnson Matthey, Foster Wheeler. The heat transfer to the catalyst bed is more favorable in an autothermal reformer than in the externally heated tubular reformers, since in the former case the heat in the gas is supplied directly to the catalyst bed.
  7. 7. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com This means that a high temperature in the catalyst bed can be achieved by burning only a small portion of the product gas. The quantity of the gas to be burned will be dependant to the inlet concentration of the methane and other “reformable” compounds (such as tars) in the gas. It is more likely that the initial temperature increase in the combustion zone will reduce the concentration of the tars and other hydrocarbons sharply. However it must be taken to account that the combustion reaction will consume a part of the hydrogen that is present in product gas. As with a steam reformer or partial oxidation system, water gas shift reactors and a hydrogen purification stage are needed. Autothermal reformers (ATRs) combine some of the best features of steam reforming and partial oxidation systems. Several companies are developing small autothermal reformers for converting liquid hydrocarbon fuels to hydrogen in fuel cell systems. (See Appendix Tables 3 – 7)
  8. 8. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com 3 Gas Heated Reforming (GHR) In the gas heated reformer (GHR) concept the heat for the endothermic reaction is supplied by cooling down the reformed gas from the secondary reformer. This technology, originally developed in the 1960s by ICI, was first demonstrated during 1988 at two ammonia plants in Severnside, UK. The feed in the gas-heated reformer is passed first to the primary reformer where about 25% of reforming takes place. The partially reformed gas is then passed to a secondary oxygen-fired reformer. The effluent of the latter is used to heat up the feed in the primary reformer. For start-up, an auxiliary burner is employed. Gas Heated Reformer The volume of a GHR is typically 15 times smaller than the volume of a fired reformer (SMR or CO2) for the same output (51). Overheating of hot metal parts and a poor temperature control can lead to problems concerning the reliable operation of heat exchange reformers. To overcome these problems, reformers usually use counter-current flows in the low-temperature part with effective heat transfer and co-current flows in the hot section for a better temperature control. Sogge et al estimated that the GHR plant would cost about 40% less to build than a comparable SMR plant, while operational costs would be about the same. According to Abbott, the GHR scheme requires 33% less oxygen than the ATR plant. The main developer of GHR technology is Johnson Matthey. (See Appendix Table 1 Comparison between different reformer concepts)
  9. 9. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com (AGHR) Advanced Gas Heated Reformer • The original GHR was a complex device to fabricate. • Desire to simplify the design: • eliminate the bayonet tubes • simplify the upper (triple) tubesheet • In 1998, BHPP replaced the original GHR with the new AGHR. The objective of this case study was to examine the flowsheet performance implications of combining (ATR) Autothermal Reforming with (AGHR) Advanced Gas Heated Reforming in the production of synthesis gas for methanol plants. (See Appendix for a Comparison of Reformer Types / Configurations)
  10. 10. Methanol Plant Equipment List and Duty (kW) Name Description Duty (kW) B-301A Pre-reformer Fired Heater (main coil) 43202 B-301B Pre-reformer Fired Heater (HDS coil) 12752 Duty (kW) C-101 HDS interchanger 35293 C-201 Saturator Blow-down Cooler 1346 C-301 AGHR Interchanger 103948 C-302 Distillation Bottoms Water Boiler 66865 C-303 Process Boiler B/D Cooler 574 C-401 Reformed Gas Saturator Water Heater 49992 C-402 Desaturator Water Cooler 91696 C-501 Loop Interchanger 60541 C-502 Loop Saturator Water Heater 38158 C-503 Loop Condenser 339670 C-601 Sat Water Distillation Reboiler 215257 C-602 Primary Overhead Condenser 185355 C-603 Secondary Overhead Condenser 30892 C-604 Methanol Product Cooler 12927 C-605 Steam Heated Distillation Reboiler 12752 D-301 Distillation Bottoms Water Boiler Steam Drum D-501 Loop Catchpot D-601 Let-down Vessel / Scrubber D-602 Distillation Reflux Drum ∆P (bar) Duty (kW) J-201 Saturator Water Pumps 6.5 724 J-401 Desaturator Water Pumps 5.5 842 J-402 Process Condensate Pumps 18.4 312 J-601 Distillation Reflux Pumps 6.0 212 J-602 Bottoms Water Pumps 47.5 154 Feed [bar] Product [bar] Duty [kW] K-101 Natural Gas Compressor 20.7 52.3 12438 K-501A MUG Compressor 37.6 84 43853 K-501B Loop Circulator 78.6 84.7 10256 KT-501 Compressor / Circulator Steam Turbine 54108 Duty (kW) R-101 HDS Vessel R-102 Desulfurizer Vessls (2) R-301 Pre-reformer R-302 AGHR 328411 R-303 ATR R-501 Gas Cooled Synthesis Reactor R-502 Water Cooled Synthesis Reactor 134787 Theroetical Stages T-201 Saturator 10 T-401 Desaturator 10 T-501 Purge Gas Scrubber 10 T-601 Distiullation Column 35 X-501 H2 Recovery Membrane Package
  11. 11. VULCAN SYSTEMS METHANOL PLANT PFD’s CASE STUDY#08270414 GBH ENTERPRISES, LTD. WWW.GBHENTERPRISES.COM
  12. 12. HYDRODESULFURIZATION PFD GBH ENTERPRISES, LTD. WWW.GBHENTERPRISES.COM
  13. 13. SATURATOR PFD GBH ENTERPRISES, LTD. WWW.GBHENTERPRISES.COM
  14. 14. ATR & AGHR REFORMING PFD GBH ENTERPRISES, LTD. WWW.GBHENTERPRISES.COM
  15. 15. (MUG) MAKE UP GAS COOLING PFD GBH ENTERPRISES, LTD. WWW.GBHENTERPRISES.COM
  16. 16. SYNTHESIS PFD GBH ENTERPRISES, LTD. WWW.GBHENTERPRISES.COM
  17. 17. DISTILLATION PFD GBH ENTERPRISES, LTD. WWW.GBHENTERPRISES.COM
  18. 18. 1- COLUMN DISTILLATION PFD GBH ENTERPRISES, LTD. WWW.GBHENTERPRISES.COM
  19. 19. Process Streams: Base Case Stream S-101 S-102 S-103 S-104 S-105 S-106 S-201 S-202 S-203 S-204 S-205 S-206 S-207 S-301 S-302 S-303 S-304 S-306 S-307 S-308 S-309 S-310 S-311 S-312 S-401 S-402 S-403 S-404 S-405 S-406 S-407 S-408 S-501 S-502 S-503 S-504 S-505 S-506 S-507 S-508 S-509 S-510 S-511 S-512 S-513 S-601 S-602 S-603 S-604 S-605 S-606 S-607 S-608 Property Unit Vapour Fraction <none> 1 1 1 1 1 1 1 0.00079 0 0.002602 0 0 0 0.997318 1 1 1 1 1 1 1 1 0 1 1 1 0.000263 0.000195 0 0 0 0.000185 1 1 1 1 1 0.997999 1 0 1 1 0 0 1 0.006611 0 0 1 1 1 0 1 Temperature C 45.0 132.5 320.0 380.0 203.5 45.0 230.5 240.9 182.5 45.0 183.0 228.5 110.0 236.0 420.0 499.4 450.0 1050.0 580.0 478.5 317.3 265.8 45.0 50.0 240.0 60.0 55.0 135.0 184.2 184.2 184.9 135.0 131.9 240.1 60.0 60.0 64.6 66.5 68.7 60.0 64.6 66.5 45.0 63.7 165.7 62.2 77.2 120.2 45.0 76.4 72.4 45.0 52.8 Pressure bar 20.7 52.3 51.5 51.0 50.0 20.7 49.5 51.5 50.0 49.0 56.5 52.5 50.0 49.5 48.8 48.0 47.0 41.0 40.0 39.3 38.8 49.5 48.5 45.0 38.1 37.6 39.6 39.6 38.1 38.1 56.5 41.6 84.0 81.0 78.6 78.6 78.1 37.6 84.7 78.6 78.1 77.1 80.1 78.6 84.0 6.0 1.6 2.0 1.3 1.6 1.5 7.5 5.5 Molar Flow kgmole/h 14060.0 13560.0 13938.1 13938.1 13938.1 500.0 35608.3 167257.4 145587.2 460.0 167257.4 167257.4 1371.5 41369.5 41369.5 41369.5 42989.7 68410.2 68410.2 68410.2 68410.2 5761.3 117.6 6377.6 68410.2 46279.6 54293.6 145706.4 222130.6 22130.6 22130.6 54293.6 187963.8 162692.8 146001.3 7160.4 7107.7 2845.2 138838.9 16691.5 378.1 3884.4 500.0 552.7 49124.8 17499.1 12757.4 4507.4 234.3 22393.2 3174.0 500.0 243.9 Mass Flow tonne/h 244.9 236.2 239.8 239.8 239.8 8.7 630.4 3012.4 2621.8 8.3 3012.4 3012.4 24.7 734.2 734.2 734.2 734.2 939.3 939.3 939.3 939.3 103.8 2.1 205.1 939.3 540.4 978.5 2625.9 4003.3 398.8 398.8 978.5 1928.2 1928.2 1444.9 70.9 68.9 13.8 1373.9 483.3 3.7 51.4 9.0 11.0 554.2 496.0 405.7 81.2 9.1 719.6 103.6 9.0 7.2 Component Molar Fraction Hydrogen mol % 0.00% 0.00% 2.01% 2.01% 2.01% 0.00% 0.80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.69% 0.69% 0.69% 6.41% 45.40% 45.96% 45.96% 45.96% 0.00% 0.00% 0.00% 45.96% 67.93% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 72.35% 65.94% 73.44% 73.44% 73.99% 90.82% 73.44% 0.30% 73.99% 61.66% 0.00% 0.01% 69.25% 0.01% 0.00% 0.00% 0.39% 0.00% 0.03% 0.00% 20.14% CO 0.00% 0.00% 0.08% 0.08% 0.08% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.04% 0.04% 0.03% 14.32% 13.76% 13.76% 13.76% 0.00% 0.00% 0.00% 13.76% 20.33% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 7.31% 2.80% 3.11% 3.11% 3.13% 0.74% 3.11% 0.07% 3.13% 4.88% 0.00% 0.01% 19.19% 0.01% 0.00% 0.00% 0.56% 0.01% 0.04% 0.00% 4.56% CO2 0.00% 0.00% 0.18% 0.18% 0.18% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.08% 0.08% 1.97% 5.42% 5.98% 5.98% 5.98% 0.00% 0.00% 0.00% 5.98% 8.83% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 7.17% 6.17% 6.70% 6.70% 6.73% 3.18% 6.70% 1.51% 6.73% 9.33% 0.00% 0.24% 8.50% 0.78% 0.00% 0.00% 57.92% 0.62% 4.33% 0.00% 48.50% Methane 89.74% 89.74% 87.39% 87.39% 87.39% 89.74% 34.20% 0.31% 0.36% 0.36% 0.31% 0.31% 0.00% 29.44% 29.44% 29.44% 29.97% 0.35% 0.35% 0.35% 0.35% 0.00% 0.00% 0.00% 0.35% 0.51% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.51% 2.90% 3.21% 3.21% 3.23% 0.76% 3.21% 0.17% 3.23% 5.04% 0.00% 0.02% 0.53% 0.03% 0.00% 0.00% 2.57% 0.03% 0.19% 0.00% 9.27% Ethane 5.24% 5.24% 5.10% 5.10% 5.10% 5.24% 2.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.72% 1.72% 1.72% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Propane 0.20% 0.20% 0.19% 0.19% 0.19% 0.20% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.07% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% n-Butane 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% n-Pentane 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% n-Hexane 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Nitrogen 4.80% 4.80% 4.95% 4.95% 4.95% 4.80% 1.94% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.67% 1.67% 1.67% 1.60% 1.01% 1.01% 1.01% 1.01% 0.00% 0.00% 0.00% 1.01% 1.49% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7.95% 9.19% 10.22% 10.22% 10.29% 2.43% 10.22% 0.17% 10.29% 16.05% 0.00% 0.01% 1.55% 0.01% 0.00% 0.00% 0.88% 0.01% 0.06% 0.00% 10.66% Methanol 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.75% 8.62% 1.02% 1.02% 0.03% 0.08% 1.02% 75.13% 0.03% 0.00% 0.00% 12.72% 0.00% 72.06% 98.21% 0.00% 34.76% 99.10% 94.67% 0.00% 0.14% H2O 0.00% 0.00% 0.01% 0.01% 0.01% 0.00% 60.82% 99.68% 99.64% 99.64% 99.68% 99.68% 100.00% 66.28% 66.28% 66.28% 60.00% 33.31% 32.75% 32.75% 32.75% 100.00% 100.00% 0.00% 32.75% 0.62% 99.93% 99.93% 99.93% 99.93% 99.93% 99.93% 0.26% 2.43% 0.13% 0.13% 0.40% 0.95% 0.13% 22.52% 0.40% 0.00% 100.00% 86.98% 0.64% 27.04% 1.77% 100.00% 0.00% 0.07% 0.03% 100.00% 2.68% Ammonia 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Oxygen 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Argon 0.00% 0.00% 0.06% 0.06% 0.06% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.02% 0.02% 0.02% 0.20% 0.20% 0.20% 0.20% 0.00% 0.00% 2.00% 0.20% 0.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.67% 1.93% 2.15% 2.15% 2.16% 1.02% 2.15% 0.06% 2.16% 3.00% 0.00% 0.00% 0.34% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.73% Ethanol 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1-Propanol 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1-Butanol 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% M-Formate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 1.04% 0.08% 0.32% 0.00% 0.02% diM-Ether 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.03% 0.02% 0.02% 0.02% 0.00% 0.02% 0.03% 0.02% 0.04% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 1.87% 0.06% 0.30% 0.00% 0.29% Acetone 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.01% 0.02% 0.00% 0.00% M-E-Ketone 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% M-iP-Ketone 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Component Molar Flow Hydrogen kgmole/h 0.0 0.0 279.8 279.8 279.8 0.0 284.0 5.4 1.2 0.0 5.4 5.4 0.0 284.0 284.0 284.0 2755.0 31057.5 31441.5 31441.5 31441.5 0.0 0.0 0.0 31441.5 31437.3 10.3 27.7 42.2 4.2 4.2 10.3 135991.5 107279.7 107229.7 5258.9 5258.9 2584.1 101970.2 50.0 279.8 2395.0 0.0 0.1 34021.3 0.9 0.0 0.0 0.9 0.9 0.9 0.0 49.1 CO 0.0 0.0 11.8 11.8 11.8 0.0 16.2 4.5 0.2 0.0 4.5 4.5 0.0 16.2 16.2 16.2 12.3 9795.5 9411.7 9411.7 9411.7 0.0 0.0 0.0 9411.7 9407.3 10.6 28.6 43.5 4.3 4.3 10.6 13745.1 4552.0 4539.6 222.6 222.6 21.1 4316.7 12.4 11.8 189.7 0.0 0.1 9428.4 1.3 0.0 0.0 1.3 1.3 1.3 0.0 11.1 CO2 0.0 0.0 25.4 25.4 25.4 0.0 32.3 8.1 1.3 0.0 8.1 8.1 0.0 32.3 32.3 32.3 846.2 3709.5 4093.3 4093.3 4093.3 0.0 0.0 0.0 4093.3 4086.5 16.8 45.0 68.6 6.8 6.8 16.8 13478.4 10034.7 9782.1 479.7 478.3 90.6 9301.3 252.7 25.4 362.3 0.0 1.4 4177.1 135.8 0.1 0.0 135.7 138.1 137.3 0.0 118.3 Methane 12617.4 12168.7 12181.0 12181.0 12181.0 448.7 12179.6 517.6 518.9 1.6 517.6 517.6 0.0 12179.6 12179.6 12179.6 12883.2 236.7 236.7 236.7 236.7 0.0 0.0 0.0 236.7 236.4 0.8 2.1 3.3 0.3 0.3 0.8 4716.3 4716.3 4687.8 229.9 229.8 21.8 4458.1 28.5 12.2 195.8 0.0 0.1 258.2 6.0 0.0 0.0 6.0 6.1 6.0 0.0 22.6 Ethane 736.7 710.5 710.5 710.5 710.5 26.2 710.5 0.2 0.2 0.0 0.2 0.2 0.0 710.5 710.5 710.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Propane 28.1 27.1 27.1 27.1 27.1 1.0 27.1 0.0 0.0 0.0 0.0 0.0 0.0 27.1 27.1 27.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n-Butane 2.8 2.7 2.7 2.7 2.7 0.1 2.7 0.0 0.0 0.0 0.0 0.0 0.0 2.7 2.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n-Pentane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n-Hexane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Nitrogen 674.9 650.9 689.8 689.8 689.8 24.0 689.9 3.3 3.2 0.0 3.3 3.3 0.0 689.9 689.9 689.9 689.9 689.9 689.9 689.9 689.9 0.0 0.0 0.0 689.9 689.8 0.2 0.7 1.0 0.1 0.1 0.2 14944.0 14944.0 14916.0 731.6 731.5 69.3 14185.0 28.0 38.9 623.3 0.0 0.1 759.0 2.1 0.0 0.0 2.1 2.1 2.1 0.0 26.0 Methanol 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1411.8 14022.6 1482.3 72.7 2.4 2.3 1409.6 12540.3 0.1 0.0 0.0 70.3 2.3 12610.3 12528.8 0.0 81.4 22192.8 3004.8 0.0 0.4 H2O 0.0 0.0 1.5 1.5 1.5 0.0 21657.5 166717.8 145061.9 458.3 166717.8 166717.8 1371.5 27418.7 27418.7 27418.7 25794.9 22785.2 22401.4 22401.4 22401.4 5761.2 117.6 0.0 22401.4 286.6 54254.7 145602.0 221971.4 22114.7 22114.7 54254.7 494.4 3948.3 190.0 9.3 28.6 27.1 180.7 3758.4 1.5 0.0 500.0 480.7 313.7 4732.5 225.2 4507.3 0.0 16.8 1.1 500.0 6.5 Ammonia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Oxygen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6250.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Argon 0.0 0.0 8.2 8.2 8.2 0.0 8.2 0.2 0.1 0.0 0.2 0.2 0.0 8.2 8.2 8.2 8.2 135.8 135.8 135.8 135.8 0.0 0.0 127.6 135.8 135.7 0.2 0.4 0.6 0.1 0.1 0.2 3145.9 3145.9 3135.6 153.7 153.7 29.1 2981.1 10.3 8.2 116.4 0.0 0.0 164.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.1 Ethanol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 3.1 0.3 0.0 0.0 0.0 0.3 2.8 0.0 0.0 0.0 0.0 0.0 2.8 2.8 0.0 0.0 0.7 0.1 0.0 0.0 1-Propanol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1-Butanol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 M-Formate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 4.8 2.1 0.1 0.1 0.0 2.0 2.7 0.0 0.1 0.0 0.0 0.0 2.7 0.2 0.0 2.4 18.5 10.2 0.0 0.0 diM-Ether 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.0 41.0 35.7 1.8 1.7 0.0 34.0 5.3 0.1 1.7 0.0 0.0 0.0 4.6 0.2 0.0 4.4 13.1 9.5 0.0 0.7 Acetone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 2.9 0.8 0.0 0.0 M-E-Ketone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.0 0.0 0.0 M-iP-Ketone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 WWW.GBHENTERPRISES.COM CASE STUDY#08270414
  20. 20. REFORMING Name S-301 S-302 S-303 S-304 S-305 S-305A S-306 S-308 Temperature [C] 420.0 500.4 450.0 713.2 1050.0 1059.4 579.9 50.0 Pressure [bar] 48.8 48.0 47.0 43.0 41.0 41.0 40.0 45.0 Molar Flow [kgmole/h] 41473.5 41473.5 43122.9 49492.7 68621.6 68528.2 68528.2 6377.3 Mass Flow [kg/h] 735112 735112 735112 735115 940200 940200 940200 205088 Mol % CO 0.010% 0.010% 0.028% 2.602% 14.308% 13.652% 13.652% 0.000% Mol % H2O 66.370% 66.370% 60.025% 42.007% 33.254% 32.760% 32.760% 0.000% Mol % CO2 0.020% 0.020% 1.913% 5.524% 5.398% 6.013% 6.013% 0.000% Mol % Hydrogen 0.670% 0.670% 6.458% 28.789% 45.498% 45.962% 45.962% 0.000% Mol % Methane 29.510% 29.510% 30.018% 19.719% 0.377% 0.446% 0.446% 0.000% Mol % Ethane 1.720% 1.720% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% Mol % Oxygen 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 98.000% Mol % Propane 0.070% 0.070% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% Mol % n-Butane 0.010% 0.010% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% Mol % Methanol 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% Mol % diM-Ether 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% Mol % Nitrogen 1.610% 1.610% 1.548% 1.349% 0.973% 0.974% 0.974% 0.000% Mol % Argon 0.010% 0.010% 0.010% 0.008% 0.192% 0.192% 0.192% 2.000% WWW.GBHENTERPRISES.COM CASE STUDY#08270414
  21. 21. (AGHR) Autothermal Gas Heated Reformer Output Stream S-301 S-302 S-303 S-304 S-305 Temperature C 450.0 50.0 709.7 1050.0 580.0 Pressure bar 47.0 45.0 43.0 41.0 40.0 Molar Flow kgmole/h 42989.6 6375.8 49273.0 68374.2 68374.3 Mass Flow kg/h 734175 205040 734177 939214 939214 Hydrogen 6.41% 0.00% 28.57% 45.35% 45.78% CO 0.03% 0.00% 2.55% 14.30% 13.87% CO2 1.97% 0.00% 5.56% 5.43% 5.86% Methane 29.97% 0.00% 19.77% 0.37% 0.37% Nitrogen 1.60% 0.00% 1.40% 1.01% 1.01% H2O 60.00% 0.00% 42.13% 33.34% 32.91% Oxygen 0.00% 98.00% 0.00% 0.00% 0.00% Argon 0.02% 2.00% 0.02% 0.20% 0.20% NTubes 657 Tube ID m 0.14 Tube OD m 0.1498 Sheath ID m 0.1605 Sheath OD m 0.1717 Tube PD bar 3.5 Heated Length m 11 Bundle Area m2 24.2 Bundle OD m 5.55 Catalyst split 57-4Q/57-4MQ % 82:18 Sheath length % 85 WWW.GBHENTERPRISES.COM CASE STUDY#08270414
  22. 22. 1-Column Distillation Name S-601 S-602 S-603 S-604 S-605 S-606 S-607 S-608 S-609 S-610 Temperature [C] 49.3 50.0 150.3 59.5 106.3 104.4 49.3 135.1 50.0 56.7 Pressure [bar] 7.0 3.9 4.8 4.0 4.3 4.1 7.0 4.7 20.0 4.1 Molar Flow [kgmole/h] 17286.6 13291.8 4176.8 315.5 25033.0 11823.7 275.5 5.0 222.0 232.5 Mass Flow [kg/h] 495494 422872 75248 9745 802945 380688 8372 140 4000 4550 Comp Molar Flow (CO) [kgmole/h] 2.0 0.0 0.0 15.2 2.7 2.7 13.2 0.0 0.0 0.0 Comp Molar Flow (H2O) [kgmole/h] 4203.2 234.7 4176.7 15.6 141.7 45.5 1.8 3.1 222.0 208.2 Comp Molar Flow (CO2) [kgmole/h] 33.9 0.1 0.0 161.5 57.2 57.1 127.7 0.0 0.0 0.2 Comp Molar Flow (Hydrogen) [kgmole/h] 1.8 0.0 0.0 37.4 2.1 2.1 35.6 0.0 0.0 0.0 Comp Molar Flow (Methane) [kgmole/h] 3.8 0.0 0.0 47.1 5.0 5.0 43.4 0.0 0.0 0.0 Comp Molar Flow (Methanol) [kgmole/h] 13027.6 13043.1 0.0 2.4 24692.8 11598.8 18.0 1.4 0.0 22.7 Comp Molar Flow (diM-Ether) [kgmole/h] 6.2 6.0 0.0 0.3 96.2 85.1 0.1 0.0 0.0 1.1 Comp Molar Flow (Ethanol) [kgmole/h] 3.1 3.1 0.0 0.0 3.0 1.1 0.0 0.0 0.0 0.0 Comp Molar Flow (M-Formate) [kgmole/h] 3.0 2.9 0.0 0.0 30.8 25.5 0.0 0.0 0.0 0.2 Comp Molar Flow (M-E-Ketone) [kgmole/h] 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 Comp Molar Flow (1-Propanol) [kgmole/h] 1.2 1.2 0.0 0.0 0.3 0.1 0.0 0.0 0.0 0.0 Comp Molar Flow (1-Butanol) [kgmole/h] 0.5 0.5 0.0 0.0 0.3 0.1 0.0 0.5 0.0 0.0 Comp Molar Flow (Acetone) [kgmole/h] 0.2 0.2 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 Comp Molar Flow (Nitrogen) [kgmole/h] 0.1 0.0 0.0 35.8 0.1 0.1 35.7 0.0 0.0 0.0 Comp Mole Frac (CO) 0.012% 0.000% 0.000% 4.833% 0.011% 0.023% 4.806% 0.000% 0.000% 0.006% Comp Mole Frac (H2O) 24.315% 1.766% 99.998% 4.939% 0.566% 0.385% 0.648% 61.159% 100.000% 89.586% Comp Mole Frac (CO2) 0.196% 0.001% 0.000% 51.196% 0.229% 0.483% 46.340% 0.000% 0.000% 0.074% Comp Mole Frac (Hydrogen) 0.010% 0.000% 0.000% 11.867% 0.008% 0.018% 12.934% 0.000% 0.000% 0.001% Comp Mole Frac (Methane) 0.022% 0.000% 0.000% 14.940% 0.020% 0.042% 15.740% 0.000% 0.000% 0.002% Comp Mole Frac (Methanol) 75.363% 98.129% 0.001% 0.771% 98.641% 98.098% 6.517% 27.808% 0.000% 9.765% Comp Mole Frac (diM-Ether) 0.036% 0.045% 0.000% 0.111% 0.384% 0.720% 0.042% 0.001% 0.000% 0.488% Comp Mole Frac (Ethanol) 0.018% 0.023% 0.000% 0.000% 0.012% 0.010% 0.001% 0.022% 0.000% 0.001% Comp Mole Frac (M-Formate) 0.017% 0.022% 0.001% 0.001% 0.123% 0.215% 0.008% 0.002% 0.000% 0.077% Comp Mole Frac (M-E-Ketone) 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% Comp Mole Frac (1-Propanol) 0.007% 0.009% 0.000% 0.000% 0.001% 0.001% 0.000% 0.368% 0.000% 0.000% Comp Mole Frac (1-Butanol) 0.003% 0.003% 0.000% 0.000% 0.001% 0.001% 0.000% 10.640% 0.000% 0.000% Comp Mole Frac (Acetone) 0.001% 0.001% 0.000% 0.000% 0.003% 0.003% 0.000% 0.000% 0.000% 0.000% Comp Mole Frac (Nitrogen) 0.000% 0.000% 0.000% 11.343% 0.000% 0.001% 12.964% 0.000% 0.000% 0.000% WWW.GBHENTERPRISES.COM DESIGN CASE STUDY#08270414
  23. 23. Distillation Stage Temperature liquid from Temperature vapor to Pressure Heat duty Liquid flow Vapor flow Feed Draw Mass flow liquid from Mass flow vapor to Molecular wt liquid from Molecular wt vapor to Density liquid from Density vapor to Viscosity liquid from Viscosity vapor to Surface tension liquid from C C bar MW kmol/hr kmol/hr kmol/hr kmol/hr kg/hr kg/hr gm/cc gm/cc cP cP dyne/cm 1 106.3 106.7 4.30 13284.6 25041.6 423897.8 804722.2 31.91 32.05 694.3 4.69 0.209 7.76E-03 17.47 2 106.7 107.2 4.35 13283.4 25112.0 423229.7 804054.1 31.86 32.02 694.1 4.74 0.208 7.78E-03 17.54 3 107.2 107.2 4.40 25110.8 25119.2 13291.8 422872.4 803696.9 31.81 32.00 694.0 4.74 0.207 7.78E-03 17.61 4 107.2 107.7 4.40 125.09 14239.8 11781.9 25119.2 452347.0 877002.9 31.77 31.80 694.4 4.71 0.207 7.79E-03 17.74 5 107.7 108.1 4.41 117.04 14188.5 27577.1 447529.7 872185.6 31.54 31.69 695.7 4.70 0.207 7.81E-03 18.30 6 108.1 108.5 4.42 14132.9 27525.7 442789.1 867445.1 31.33 31.58 697.2 4.69 0.207 7.84E-03 18.87 7 108.5 108.8 4.44 14077.9 27470.1 438152.9 862808.8 31.12 31.47 698.8 4.68 0.207 7.86E-03 19.43 8 108.8 109.2 4.45 14023.8 27415.2 433617.1 858273.0 30.92 31.37 700.3 4.68 0.207 7.88E-03 19.98 9 109.2 109.5 4.46 13970.7 27361.1 429183.3 853839.2 30.72 31.27 701.9 4.67 0.208 7.90E-03 20.53 10 109.5 109.9 4.47 13918.5 27307.9 424853.7 849509.6 30.52 31.17 703.5 4.66 0.208 7.93E-03 21.06 11 109.9 110.2 4.48 13867.4 27255.8 420630.3 845286.2 30.33 31.07 705.1 4.65 0.208 7.95E-03 21.58 12 110.2 110.6 4.49 13817.6 27204.7 416514.5 841170.4 30.14 30.98 706.6 4.64 0.208 7.97E-03 22.10 13 110.6 110.9 4.51 13769.1 27154.9 412507.1 837163.0 29.96 30.88 708.2 4.64 0.208 7.99E-03 22.60 14 110.9 111.2 4.52 13722.0 27106.3 408608.4 833264.4 29.78 30.79 709.8 4.63 0.208 8.01E-03 23.09 15 111.2 111.6 4.53 13676.3 27059.2 404819.2 829475.1 29.60 30.71 711.3 4.62 0.208 8.03E-03 23.57 16 111.6 111.9 4.54 13632.1 27013.6 401140.8 825796.8 29.43 30.62 712.9 4.62 0.208 8.05E-03 24.03 17 111.9 112.2 4.55 13589.5 26969.4 397576.9 822232.8 29.26 30.54 714.4 4.61 0.208 8.07E-03 24.48 18 112.2 112.5 4.56 13548.4 26926.8 394134.3 818790.2 29.09 30.45 716.0 4.61 0.208 8.09E-03 24.91 19 112.5 112.8 4.58 13508.8 26885.6 390824.1 815480.0 28.93 30.38 717.5 4.60 0.207 8.11E-03 25.33 20 112.8 113.1 4.59 13470.7 26846.0 387662.9 812318.8 28.78 30.30 719.0 4.60 0.207 8.13E-03 25.74 21 113.1 113.4 4.60 13434.2 26808.0 384673.1 809329.0 28.63 30.23 720.4 4.60 0.207 8.14E-03 26.12 22 113.4 113.7 4.61 13399.5 26771.5 381883.2 806539.2 28.50 30.17 721.8 4.60 0.207 8.16E-03 26.49 23 113.7 114.0 4.62 13366.6 26736.7 379327.7 803983.7 28.38 30.11 723.1 4.59 0.207 8.18E-03 26.83 24 114.0 114.3 4.64 13335.7 26703.8 377046.5 801702.5 28.27 30.06 724.3 4.59 0.207 8.19E-03 27.14 25 114.3 114.5 4.65 13307.3 26673.0 375084.4 799740.3 28.19 30.02 725.4 4.60 0.207 8.20E-03 27.42 26 114.5 114.8 4.66 13281.6 26644.6 373491.4 798147.3 28.12 29.98 726.4 4.60 0.208 8.22E-03 27.66 27 114.8 115.0 4.67 13259.0 26618.9 372324.2 796980.1 28.08 29.97 727.1 4.61 0.208 8.23E-03 27.86 28 115.0 116.6 4.68 32.17 28918.9 26596.3 17519.0 811764.7 736376.8 28.07 29.77 727.7 4.56 0.208 8.32E-03 28.01 29 116.6 119.4 4.69 28484.7 24737.1 794548.7 719160.9 27.89 29.59 734.5 4.51 0.212 8.51E-03 29.68 30 119.4 123.7 4.71 27792.3 24302.9 772571.4 697183.5 27.80 29.53 745.7 4.45 0.221 8.82E-03 32.32 31 123.7 129.0 4.72 26941.2 23610.5 745999.5 670611.7 27.69 29.47 761.2 4.38 0.233 9.28E-03 35.80 32 129.0 135.1 4.73 26118.9 22759.4 690683.1 615435.5 26.44 28.05 785.7 4.10 0.238 9.87E-03 40.20 33 135.1 144.6 4.74 25460.7 21937.1 5.0 538740.6 463493.0 21.16 21.78 851.3 3.08 0.196 1.05E-02 46.82 34 144.6 149.1 4.75 25458.5 21283.9 469201.6 393954.0 18.43 18.51 896.1 2.59 0.141 1.06E-02 48.89 35 149.1 150.0 4.76 25558.6 21281.7 462111.1 386863.5 18.08 18.09 902.3 2.53 0.122 1.06E-02 48.70 36 150.0 150.2 4.78 25575.1 21381.8 461061.1 385813.6 18.03 18.03 903.3 2.52 0.181 1.06E-02 48.65 37 150.2 150.3 4.79 25580.4 21398.3 460909.4 385661.8 18.02 18.02 903.5 2.53 0.181 1.39E-02 48.63 38 150.3 150.3 4.80 25585.5 21403.7 460952.4 385704.8 18.02 18.02 903.4 2.53 0.181 1.39E-02 48.61 228.00 WWW.GBHENTERPRISES.COM Hysys Output CASE STUDY#08270414
  24. 24. Distillation Stage Temperature liquid from Temperature vapor to Pressure Density liquid from Density vapor to Viscosity liquid from Viscosity vapor to Surface tension liquid from C C bar gm/cc gm/cc cP cP dyne/cm 1 105.9 106.0 4.30 0.693 0.00440 0.242 0.0126 15.42 2 106.0 106.2 4.31 0.693 0.00441 0.242 0.0126 15.55 3 106.2 106.4 4.33 0.693 0.00442 0.242 0.0126 15.70 4 106.4 107.2 4.34 0.693 0.00438 0.242 0.0126 15.85 5 107.2 107.5 4.35 0.693 0.00437 0.241 0.0126 16.45 6 107.5 107.9 4.37 0.694 0.00437 0.240 0.0126 17.06 7 107.9 108.2 4.38 0.695 0.00437 0.240 0.0126 17.65 8 108.2 108.6 4.39 0.696 0.00436 0.240 0.0127 18.22 9 108.6 108.9 4.41 0.697 0.00436 0.239 0.0127 18.77 10 108.9 109.2 4.42 0.698 0.00435 0.239 0.0127 19.30 11 109.2 109.5 4.43 0.698 0.00435 0.239 0.0127 19.81 12 109.5 109.9 4.44 0.699 0.00435 0.238 0.0127 20.30 13 109.9 110.2 4.46 0.700 0.00435 0.238 0.0127 20.77 14 110.2 110.5 4.47 0.701 0.00435 0.237 0.0128 21.22 15 110.5 110.8 4.48 0.702 0.00435 0.237 0.0128 21.65 16 110.8 111.0 4.50 0.702 0.00435 0.237 0.0128 22.05 17 111.0 111.3 4.51 0.703 0.00435 0.236 0.0128 22.44 18 111.3 111.6 4.52 0.704 0.00435 0.236 0.0128 22.80 19 111.6 111.8 4.54 0.705 0.00435 0.236 0.0128 23.14 20 111.8 112.1 4.55 0.705 0.00435 0.235 0.0129 23.46 21 112.1 112.3 4.56 0.706 0.00436 0.235 0.0129 23.77 22 112.3 112.6 4.58 0.706 0.00436 0.235 0.0129 24.05 23 112.6 112.8 4.59 0.707 0.00436 0.234 0.0129 24.32 24 112.8 113.0 4.60 0.707 0.00437 0.234 0.0129 24.58 25 113.0 113.2 4.62 0.708 0.00437 0.234 0.0129 24.82 26 113.2 113.4 4.63 0.708 0.00438 0.234 0.0129 25.04 27 113.4 113.6 4.64 0.709 0.00437 0.233 0.0129 25.26 28 113.7 114.5 4.66 0.709 0.00436 0.233 0.0129 25.45 29 114.5 115.7 4.67 0.711 0.00434 0.232 0.0130 26.21 30 115.7 118.0 4.68 0.716 0.00427 0.231 0.0131 27.81 31 118.0 122.4 4.69 0.726 0.00411 0.229 0.0133 31.00 32 122.4 131.0 4.71 0.750 0.00368 0.223 0.0137 37.08 33 131.0 142.8 4.72 0.807 0.00293 0.208 0.0142 45.33 34 142.8 148.5 4.73 0.851 0.00254 0.189 0.0144 48.29 35 148.5 149.8 4.75 0.860 0.00246 0.181 0.0144 48.32 36 149.8 150.1 4.76 0.862 0.00245 0.180 0.0144 48.27 37 150.1 150.3 4.77 0.862 0.00245 0.179 0.0144 48.25 38 150.3 150.4 4.79 0.862 0.00246 0.179 0.0144 48.23 Reboiler 150.4 150.4 4.8 0.862 0.00246 0.179 0.0144 48.21 Aspen Output WWW.GBHENTERPRISES.COM CASE STUDY#08270414
  25. 25. Purge Gas Scrubber 2 ft diameter based on 1.5" metal Pall rings and 3 te/hr of scrubbing water Vapor to: Tray Mass Flow [kg/h] Gas Flow [ACT_m3/h] Mole Wt. Temperature [C] Density [kg/m3] Viscosity [cP] 1 5249.3 1000.3 26.20 66.5 5.25 1.67E-02 2 5299.8 985.3 26.26 66.5 5.38 1.66E-02 3 5350.2 958.6 26.40 63.2 5.58 1.64E-02 4 5488.1 914.7 26.84 52.4 6.00 1.58E-02 Liquid from: Tray Mass Flow [kg/h] Liq Flow [m3/s] Mole Wt. Temperature [C] Density [kg/m3] Viscosity [cP] Surf Ten [dyne/cm] 1 3084.9 8.80E-04 18.17 62.4 974.13 0.476 65.1 2 3135.3 9.01E-04 18.30 66.5 966.37 0.446 63.9 3 3185.7 9.22E-04 18.51 66.5 959.99 0.444 63.3 4 3323.6 9.77E-04 19.11 63.2 944.52 0.459 62.1 Vent & Flash Gas Scrubber 3 ft diameter based on 1.5" metal Pall rings and 4 te/hr of scrubbing water Vapor to: Tray Mass Flow [kg/h] Gas Flow [ACT_mMole Wt. Temperature [C] Density [kg/m3] Viscosity [cP] 1 9886.5 2172.7 30.91 60.4 4.55 1.59E-02 2 10017.8 2137.8 31.08 56.8 4.69 1.56E-02 3 10296.5 2099.3 31.59 47.9 4.90 1.50E-02 Liquid from: Tray Mass Flow [kg/h] Liq Flow [m3/s] Mole Wt. Temperature [C] Density [kg/m3] Viscosity [cP] Surf Ten [dyne/cm] 1 4140.9 1.18E-03 18.29 59.5 972.42 0.494 65.3 2 4272.2 1.24E-03 18.67 60.4 960.02 0.481 64.0 3 4551.0 1.35E-03 19.58 56.8 937.25 0.493 62.1 WWW.GBHENTERPRISES.COM CASE STUDY#08270414
  26. 26. VULCAN SYSTEMS METHANOL PLANT TECHNOLOGY (ATR) AUTO THERMAL REFORMING AND (AGHR) ADVANCED GAS HEATED REFORING CASE STUDY#08270414 WWW.GBHENTERPRISES.COM
  27. 27. Process Concept for Synthesis Gas Production by Adiabatic Prereforming and Autothermal Reforming WWW.GBHENTERPRISES.COM
  28. 28. TYPICAL THE AUTOTHERMAL LAYOUT WWW.GBHENTERPRISES.COM
  29. 29. WWW.GBHENTERPRISES.COM Autothermal Reformer
  30. 30. WWW.GBHENTERPRISES.COM ATR Model Simulations
  31. 31. WWW.GBHENTERPRISES.COM ATR Synthesis Gas Properties
  32. 32. WWW.GBHENTERPRISES.COM Advanced Gas Heated Reformer
  33. 33. WWW.GBHENTERPRISES.COM
  34. 34. WWW.GBHENTERPRISES.COM
  35. 35. • Part of major component combined with the sheath tubeplate • Low alloy plate P4 group materials • Machined Fabrication • Weight 28 tonnes WWW.GBHENTERPRISES.COM
  36. 36.  Part of major component combined with catalyst tubeplate sub-assembly  Low alloy plate P4 group materials  Machined Fabrication  Weight 17 tonnes WWW.GBHENTERPRISES.COM
  37. 37.  Major element of the AGHR  Large Fabrication, critical machined features  Support platform for the bundle  Key item with two tiers of close tolerance tube hole arrays.  Weight 45 tonnes WWW.GBHENTERPRISES.COM
  38. 38.  Fabricated tube component with laser welded fins.  High tolerance required, needs to fit precisely with corresponding components  Relatively flimsy assembly careful handling required WWW.GBHENTERPRISES.COM
  39. 39.  Fabricated tube component  High tolerance required on outside & inside diameters to achieve fit with corresponding components WWW.GBHENTERPRISES.COM
  40. 40. WWW.GBHENTERPRISES.COM
  41. 41. WWW.GBHENTERPRISES.COM
  42. 42.  Large plate fabrication.  Grillage aperture centres to be in line with tube array.  High level of accuracy required WWW.GBHENTERPRISES.COM
  43. 43. WWW.GBHENTERPRISES.COM
  44. 44. WWW.GBHENTERPRISES.COM
  45. 45. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com APPENDIX METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) AUTO THERMAL REFORMING AND (AGHR) ADVANCED GAS HEATED REFORING CASE STUDY#08270414
  46. 46. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Figure 1
  47. 47. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Figure 2
  48. 48. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Table I Comparison between Different Reformer Concepts
  49. 49. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Table 2 Advantages and Disadvantages for Different Synthesis Gas Technologies
  50. 50. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Table 3: Small-Scale Reformers for Syn Gas Generation (Con’t)
  51. 51. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  52. 52. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Table 4: Small-Scale Autothermal Reformers for SynGas Generation
  53. 53. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Table 5: Small-Scale Partial Oxidation for SynGas Generation
  54. 54. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  55. 55. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Table 6: Small-Scale Methanol Steam Reforming for SynGas Generation
  56. 56. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com Table 7: Small-Scale [Ammonia Cracking, Sorbent Enhanced Reforming, Ion Transport Membranes, Catalytic Cracking of Methane, Plasma Reformer] for SynGas Generation
  57. 57. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com

×