
Be the first to like this
Published on
Integration of Special Purpose Centrifugal Fans into a Process
0 INTRODUCTION
1 SCOPE
2 NOTATION
3 PRELIMINARY CHOICE OF NUMBER OF FANS
3.1 Volume Flow Q o
3.2 Definitions
3.3 Estimate of Equivalent Pressure Rise Δ P e
3.4 Choice of Fan Type
3.5 Choice of Control Method
4 GAS DENSITY CONSIDERATIONS
4.1 Calculation of Inlet Pressure
4.2 Calculation of Gas Density
4.3 Atmospheric Air Conditions
5 CAPACITY AND PRESSURE RISE RATING
5.1 Calculation of Fan Capacity
5.2 Calculation of Fan Pressure Rise
5.3 Multiple Duty Points
5.4 Stability
5.5 Parallel Operation
6 GUIDE TO FAN SELECTION
6.1 Effect of Gas Contaminants
6.2 Selection of Blade Type
6.3 Selection of Rotational Speed
6.4 Wind milling and Slowroll
6.5 Estimate of Fan External Dimensions
7 POWER RATING
7.1 Estimate of Fan Efficiency
7.2 Calculation of Absorbed Power
7.3 Calculation of Driver Power Rating
7.4 Motor Power Ratings
7.5 Starting Conditions for Electric Motors
8 CASING PRESSURE RATING
8.1 Calculation of Maximum Inlet Pressure ΔP i max
8.2 Calculation of Maximum Pressure Rise Δ P s max
8.3 Calculation of Casing Test Pressure
8.4 Rating for Explosion
9 NOISE RATING
9.1 Estimate of Fan Sound Power Rating LR
9.2 Acceptable Sound Power Level LW
9.3 Acceptable Sound Pressure Level L p
9.4 Assessment of Silencing Requirements
APPENDICES
A RELIABILITY CLASSIFICATION
B FAN LAWS
FIGURES
3.4 GUIDE TO FAN TYPE
4.5 VARIATION OF AIR DENSITY WITH TEMPERATURE AND ALTITUDE
6.3.1 DUTY BOUNDARY FOR SINGLE  INLET IMPELLERS
6.3.3 RELATIONSHIP BETWEEN HEAD COEFFICIENT AND SPECIFIC SIZE
6.3.6 ROTATIONAL SPEEDS FOR FAN IMPELLERS WITH BACK SWEPT VANES
6.3.7 ROTATIONAL SPEED FOR FAN IMPELLERS WITH RADIAL VANES
6.3.8 RELATIONSHIP OF IMPELLER TIP SPEED TO SHAPE
6.3.9 BOUNDARY DEFINING ARDUOUS DUTY
7.1 NOMOGRAPH FOR ESTIMATING THE EFFICIENCY OF A SINGLE STAGE FAN
7.2 GRAPH: COEFFICIENT OF COMPRESSIBILITY vs PRESSURE RATIO
7.5 GRAPH: MOMENT OF INERTIA OF FAN AND MOTOR (wR2) vs kW
Be the first to like this
Be the first to comment