UNIDAD 1 TEOREMA FUNDAMENTAL DEL CÁLCULO

10,427 views
10,052 views

Published on

0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
10,427
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
239
Comments
0
Likes
5
Embeds 0
No embeds

No notes for slide

UNIDAD 1 TEOREMA FUNDAMENTAL DEL CÁLCULO

  1. 1. Instituto Tecnológico de AcapulcoSUBSECRETARIA DE EDUCACIÓN SUPERIOR INSTITUTO TECNOLÓGICO DE ACAPULCO DEPARTAMENTO DE CIENCIAS ECONÓMICO ADMINISTRATIVO INGENIERÍA EN GESTIÓN EMPRESARIAL CALCULO INTEGRAL PROFESOR: JOSE LUIS SOTELO. UNIDAD 1 TEOREMA FUNDAMENTAL DEL CÁLCULO INTEGRANTES DE EQUIPO: BEATRIZ ISABEL ALMAGUER T. CÉSAR IVÁN GOMÉZ SANTAMARÍA JOCELYN BELLO BONILLA GENÉSIS GARCÍA ACOSTA VIRIDIANA GALEANA NIEVES ANA SILVIA RAMÍREZ LARA FECHA: lunes, 07 de Junio del 2010.
  2. 2. UNIDAD 1 TEOREMA FUNDAMENTAL DEL CÁLCULOTAREA: INVESTIGACIÓN.1.2.- NOTACION SUMATORIAEste tema es uno de los más simples de cálculo integral.A continuación se explicará paso a paso como resolver un ejercicio de este tema:1.- Identificar cual es el número con el que vas a empezar a sumar. Ese número esta debajo de este signo .2.- Después de haber identificado el número tienes que identificar otro número para saber hasta quenúmero vas a terminar de sumar. Ese número se encuentra arriba de este signo: .3.- Después de haber identificado los números, entonces pones los números que vas a sumar delante delsigno igual que debes de poner enseguida del signo: .4.- Sumas los números y esta terminado tu ejercicio.5.- Si hay letra debajo del símbolo de suma, sustituyes la letra por el valor numérico hasta que llegues alnúmero que esta arriba del símbolo suma.A continuación se te muestra un ejemplo:1.- 4n=0 n=0+1+2+3+4=102.- 7k=1k (k+1)=1(1+1)+2(2+1)+3(3+1)+4(4+1)+5(5+1)+6(6+1)+7(7+1)=143La notación se lee:Suma de x sub-i (ó sigma sub-i) donde i asume todos los valores de 1 hasta n. o simplemente suma de xsub-i, donde i va de 1 a n.La letra debajo del operador se llama índice de la suma, en la expresión: Note que el índice de la suma es iLas sumatorias se pueden representar bajo dos tipos de notaciones:NOTACION SUMATORIA ABIERTA: esta notación va e una representación de sumatoria a cada uno de loselementos que la componen por ejemplo: = + +
  3. 3. NOTACION SUMATORIA PERTINENTE: esta notación es al contrario de la suma abierta, va de larepresentación de cada uno de los elementos de una sumatoria a su representación matemática resumida,por ejemplo: + + =Ejemplo #1: Si =3 =9 =11Encontrar:Solución: = + + =3=9+11 =23Ejemplo #2: Si = 1 =2 =-1Encontrar:Solución: = + + = + + = 1+4+1 =61.3.- SUMAS DE RIEMANN:Es un método para aproximar el área total bajo la gráfica de una curva. Estas sumas toman sunombre del matemático alemán Bernhard Riemann.DEFINICIÓN:Consideremos lo siguiente:Una función f donde D es un subconjunto de los números realesl= [a, b] un intervalo cerrado contenido en D.Un conjunto finito de puntos tales que a =Crean una partición de lP=
  4. 4. Si P es una partición con n elementos de l, entonces la suma de Riemann de f sobre l con lapartición P se define como: S= Donde La elección de y; en este intervalo es arbitraria Si = para todo i, entonces denominamos S con la Suma de Riemann por la izquierda. Si = , entonces denominamos S con la suma de Riemann por la derecha.Promediando las sumas izquierda y derecha de Riemann obtenemos la llamada Suma Trapezoidal. 1.4.- DEFINICIÓN DE INTEGRAL DEFINIDA:Si f(x) está definida en el intervalo [a, b] (única condición impuesta por Riemann, puesto que ahora la definición de Integral Definida va a ser mucho más amplia que la que dimos para el Cálculo del área bajo una curva) Si existe el límite tal como lo hemos definido arriba… Entonces f(x) es integrable en el intervalo [a, b] y lo escribimosA y b se le llaman límites inferior y superior de integración.1.5.- TEOREMA DE EXISTENCIA:Es un teorema con un enunciado que comienza existe (n)…o más generalmente para todos x,y….existe (n)….Esto es, en términos de lógica simbólica, es un teorema con un enunciadoinvolucrado el cuantificador existencial. Muchos teoremas no lo hacen explícitamente, como esusual en el lenguaje matemático estándar, por ejemplo el enunciado de que la función seno es unacontinua, o cualquier teorema asentó en la notación 0.¿Existirá una solución al problema?Sea R= [a, b] x [c, d] c tal que ( ) . Si f(x, y) y1.6.- PROPIEDADES DE LA INTEGRAL DEFINIDAPara facilitar el cálculo de una integral definida, sin tener que recurrir a la definición dada en elcapítulo anterior, en donde se estableció que:
  5. 5. Se proporcionan las siguientes propiedades fundamentales:Si a>b, entonces:Si f(a) existe, entonces:Si k es una constante cualquiera, entonces:Si la función f es integral en [a, b] y k es una constante arbitraria, entonces:Si las funciones f y g son integrales en [a, b], entonces f ± g también es integrable en [a, b]:Si f es integrable en [a, b] [a, c] y [c. b], y a entonces:Si f es integrable en un intervalo cerrado I y (a, b, c) entonces:Si f es integrable en [a, b] y f(x) [a, b] entonces:Si las funciones f y g son integrales en [a, b] y f(x) g (x) x [a, b] entonces:
  6. 6. Sea f continua en [a, b]. Si m es el valor mínimo absoluto y M el valor máximo absoluto de f en [a,b] ym f(x) M, a xEntonces:m(b-a)1.7.- FUNCIÓN PRIMITIVAEs la relación dependiente de datos sobre uno (o más) valores, que declaran los límites de un área.Es la razón del porque se llama función primitiva, al ser la base del cálculo integral.Sean F y f dos funciones definidas sobre el mismo intervalo (lo más generalmente dominio).F es una primitiva de f y sólo si f es la derivada de F: F´= f.Al diferir las primitivas de una misma función f de una constante solamente resulta que ladiferencia F (b)-F(a) tiene un valor que no depende de la primitiva escogida. Es por lo tanto lógiconotarla sin mencionar a F, sino solamente a f.F (b) – F(a) =1.8.- TEOREMA FUNDAMENTAL DEL CÁLCULODescubierto por distintos caminos de Newton y Leibniz.Este teorema viene a decir que la derivación y la integración son operaciones inversas y que paracalcular la integral se realiza una antiderivación que consiste en hallar una función primitiva F(x) deaquella a la que se le quiere calcular la integral f(x) y operar de la siguiente forma.El teorema fundamental del cálculo. Sea f una función real integrable definida en un intervalocerrado [a, b]. Si se define F para cada x de la [a, b] por: F(x)El teorema fundamental del cálculo es la afirmación de que la derivación y la integración sonoperaciones inversas: si una función continua primero se integra y luego se deriva, se recupera lafunción original. Una consecuencia importante, en ocasiones denominada el segundo teorema
  7. 7. fundamental del cálculo, permite calcular integrales a base de emplear una primitiva de la funcióna integrar.ENUNCIADO DE LOS TEOREMAS:Teorema Fundamental Del cálculo:Sea f una función real integrable definida en un intervalo cerrado [a, b]. Si se define F para cada xde [a, b] por: F(x)Entonces F es continua en [a, b]. Si f es continua en x de [a, b], entonces F es derivable en x, y F´(x)= fxSegundo Teorema Fundamental Del Cálculo:Sea f una función real, integrable definida en un intervalo cerrado [a, b] es decir, F es una primitivade f entonces:COLORARIO:Si f es una función continua en [a, b ], entonces f es integrable en [a, b] y F, definida por:F(x)=Es una primitiva de f en [a, b]. Además:1.9.- CALCULO DE INTEGRALES:La técnica más básica para calcular integrales de una variable real se basa en el teoremafundamental del cálculo. Se procede de la siguiente forma: 1. Se escoge una función f(x) y un intervalo [a, b]. 2. Se halla una primitiva de f, es decir, una función F tal que F´= f. 3. Se emplea el teorema fundamental del cálculo, suponiendo que ni el integrando ni la integral tienen singularidades en el camino de integración.
  8. 8. 4.-Por tanto el valor de la integral es F(b)- F(a). Nótese que la integral no es realmente la primitiva, si no que el teorema fundamental permite emplear las primitivas para evaluar las integrales definidas. A menudo, el paso difícil es encontrar la primitiva de f. Entonces se debe utilizar alguna técnica para evaluar integrales: Integración por cambio de variable. Integración por partes. Integración por sustitución trigonométrica. Integración por fracciones parciales. 1.10.- INTEGRAL IMPROPIA: Es el límite de una integral definida cuando uno o ambos extremos del intervalo de integración se acercan a un número real específico.APUNTESFIGURAS AMORFASSon figures amorfas aquellas que no se pueden ser identificadas o reconocidas.Ejemplo:Existe la teoría de que para calcular el área de una figura amorfa es que hay que dividir en figurasconocidas.Ejemplo:
  9. 9. El objetivo principal del Cálculo Integral es encontrar áreas y volúmenes.El principal punto del Cálculo Integral, es obtener el área de figuras amorfas.NOTACIÓN SUMATORIAFormula: 1+2+3=6 14Ejercicio: Calcular el área bajo la curva que describe la función 4= f(x)= y = , en el intervalo[0,1] 1) Gráficar: B=1h h= f(1) = =1 A= bxh =1x1 = 1 2) = ½ h= f( ) = =
  10. 10. = ( = 3) = ( = = = AT = AT = 4) = = h= .: AT = +Si factorizó [ ]Nota: + + =Determinar por el método el área de la región limitada por la parábola:
  11. 11. Conjuntos de separación en: 0 y los puntos muestran f(x) = [0, 1]Por sumas de RiemannGráfica: 4) F( )= < f (.1)= f (.3)= f (.5)= f (.7)= f (.9)=SustituyendoRp=Factorizó 2 = [.01+.09+.25+.49+.81] = 2[1.65] = .33 U.A.FamiliaRp=P=0.2< .4 <0.6 <.08 <1Calcular la longitud de de la base de los rectángulos:.2 – 0 =0.2.4 - .2 = .2.6 – 4 = .2.8 - .6 = .21 - .8 = .2TAREA: Hallar el área bajo f(x)= utilizando Sumas de Riemann con particiones:
  12. 12. 0 puntos muestra 5) Rp = Rp = f ( Sustituimos los valores de f . Entonces: Rp = (0.01)(0.2)+(0.09)(0.2)+(0.25)+(0.49)(0.2) Rp = 0.002+0.001+0.050+0.098+0.162 = 0.313 V.A. R= .33 TEOREMA FUNDAMENTAL DEL CÁLCULO Sea f una función continua en el intervalo [a, b] y sea g una función, tal que: F´(x)=f(x) G´(x)=f(x) Para toda x en [a, b] entonces:

×