Your SlideShare is downloading. ×
GRM 2013: Improve groundnut productivity for marginal environments from Sub-Saharan Africa -- V Vadez
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

GRM 2013: Improve groundnut productivity for marginal environments from Sub-Saharan Africa -- V Vadez

458

Published on

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
458
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
8
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • The best lines had arquitecture and productivity similar to the elite variety. Resistance was much higher. These photos were taken at the end of the cycle.
  • Sixty most contrasting genotypes from groundnut reference collection were assessedin Maradi (2012) and Sadore (2011 and 2012) locations under well watered conditions.The pod yield ranged from 126 to 2142 kg ha-1 in Sad11, from 574 to 2772 kg ha-1 in Sad12 and from 23 to 439 kg ha-1 in Mard12. There was significant GxE interaction (F value = 3.96). GGE biplot confirms this interaction and shows 3 mega environments (Figure 1). This reveals that genotypes performed differently across environment.However, genotypes ICG 4598, ICG 3053, ICG 3140, ICG 5663, ICG 7878, ICG 5286 and ICG 2772 revealed high yielding in the Maradi and Sadore (figure 2).
  • Transcript

    • 1. Objective 1: Improve groundnut productivity for marginal environments from Sub-Saharan Africa EMBRAPA- UGA – ICRISAT – ISRA-Senegal – Malawi Nat. Prog. – Tanzania Nat. Prog GCP-ARM – Lisbon – 27-30 Sept 2013
    • 2. 1: Diversity (disease / drought) 2: Molecular tools / SNPs 3: Disease QTL 4: Breeding (MABC / new pops) 5: Training 6: Data management Rust Rosette Early leaf spots Drought
    • 3. A. hypogaea cv IAC Runner-886 BC-111 0 10 20 30 40 50 60 70 80 90 AixAd BC-5 BC-3 BC-136 BC-138 BC-203 BC-36 BC-33 BC-156 BC-6 BC-77 BC-157 BC-15 BC-30 BC-13 BC-170 BC-111 BC-145 Productivity (g) %DLA *10 Rust: ICGV 02194, ICG 11426, ICGV 01276, ICGV 02286, and ICG 02446 Rosette: ICG 14705, ICG 13099, ICG 9449, and ICG 15405 ELS in ESA; ICG 6022, ICG 405, ICG 14466, ICG 6057, ICG 9449 and ICG 12509 ELS in WCA: ICG 6703; ICG 10036, ICG 10384 ICG 9449, ICG 12509, and ICG 11219 Wild germplasm Cultivated germplasm
    • 4. CSSL phenotyping in Senegal Year Season Trial Traits 2011 off 2 water regimes 3 replications Plant, seed and pod morphology, Yield components 2012 off 2 water regimes 3 replications Plant, seeds and pod morphology Yield components 2012 rainy Nioro 3 replications ELS 2013 rainy 3 locations Nioro (800mm) Bambey (550mm) Ndieul (300mm) 3 replications Yield components Subset of 80 CSSLs (Fleur 11 x AiAd) 42 QTLs over 4 traits Same subset of 80 CSSLs - Icrisat Niger (2011) - Icrisat Malawi (2011) - Icrisat India (2011) - Embrapa (Dec 2012) Activity 1: Genetic resources
    • 5. Development of new populations at ISRA-CERAAS A. duranensis A. ipaensis A. batizocoi A. valida A. hypogaea Var Fleur11 ISATGR 278-18 F1 ISATGR 52B x Fleur11 X Activity 1: Genetic resources
    • 6. ABQTL (BC2F4) pop. ISATGR278-18 x Fleur11  22 BC1 plants identified out of ~500 plants checked  Check of introgressions and recombinations on 14 l. groups  168 BC2 obtained from 22 BC1 x Fleur11♂  BC2F4 available in Oct. BC2F4:6 phenotyping in sep. 2014 Activity 1: Genetic resources ABQTL (BC2F4) pop. ISATGR52B x Fleur11  F1 produced in 2012 / 112 BC1 currently identified.  Target 192 BC1 for genetic map construction  Ongoing backcrossing of 50 BC1 ➜ 400 BC2 in July  BC2 ➜ BC2F2 Sep. – Dec. 2013 BR-BatSten1 = (A. batizocoiK9484 x A. stenospermaV10309)4x BR-BatDur1 = (A. batizocoiK9484 x A. duranensis V14167)4x BR-BatDur2 = (A. batizocoiK9484 x A. duranensis SeSn2848)4x BR-IpaVillo1 = (A. ipaensis KG30076 x A. villosaV12812)4x BR-GregSten1 = (A. gregoryiV6389 x A stenospermaV10309)4x BR-IpaCor = (A. ipaensisKG30076 xA. correntina )4x ALL RESISTANT TO RUST!!!! New synthetics produced at EMBRAPA
    • 7. 60 lines from phase 1 re-evaluated across locations ICG 12879 ICGV 02189 55-437 ICG 3140 ICG 4729 ICG 3584 ICGV 02038 ICGV 02266 ICGV 96466 ICGV 97182 ICG 4750 ICG 11088 47-10 ICG 14482 ICG 2772 ICG 5663 JL24 ICG 1834 ICG 12625 ICG 8106 ICGV 99001 ICGV02038, ICGV02189, ICGV 86124, ICGV 01276 and ICGV 97182) in good agronomic background identified by farmers on station are being used to generate new crosses to enhance drought and disease tolerance in sensitive varieties Activity 1: Genetic resources
    • 8. R² = 0.65 -2 0 2 4 6 8 10 12 14 16 0.00 0.50 1.00 1.50 2.00 2.50 3.00 PodYield-WS Transpiration Efficiency Postrainy season Activity 1: Genetic resources Sensitive Tolerant VPD response / Canopy development dynamics Branching Leaf area LA under soil drying LA under high VPD
    • 9. Development and use of KASPar genotyping assay *used for MABC also; LLS: Late leaf spot; ELS: Early leaf spot; GRD: Groundnut rosette disease O/L: Oleic/ linoleic fatty acid; DR: Disease resistance Total SNPs selected for KASPar assay 96 No. of validated markers on 94 genotypes 90 No. of polymorphic markers in reference set 72 Mean polymorphic information content (PIC) 0.32 Parental genotypes of mapping populations Segregating traits Polymorphic markers Polymorphism rate (%) Interspecific mapping populations TMV 2 × TxAG 6 Agronomic traits 40 44.4 ICGV 87846 × ISATGR 265-5 Agronomic traits 36 40.0 ICG 0350 × ISATGR 184 Agronomic traits 37 41.1 ICG 0350 × ISATGR 9B Agronomic traits 36 40.0 ICG 0350 × ISATGR 5B Agronomic traits 44 48.9 ICG 0350 × ISATGR 90B Agronomic traits 36 40.0 Intraspecific mapping populations TG 26 × GPBD 4 Rust and LLS resistance 19 21.1 TAG 24 × GPBD 4* Rust and LLS resistance 18 20.0 ICG 11337 × JL 24 LLS resistance 22 24.4 ICGV 93437 × ICGV 95714 ELS resistance 20 22.2 Robut 33-1 × ICGV 95714 ELS resistance 23 25.6 ICGV 93437 × ICGV 91114 Rust resistance 9 10.0 ICGV 93437 × ICGVSM 95342 Rust resistance 23 25.6 ICGS 76 × CSMG 84-1 Drought tolerance 9 10.0 ICGS 44 × ICGS 76 Drought tolerance 5 5.6 TAG 24 × ICGV 86031 Drought tolerance 0 0.0 Chalimbana × ICGVSM 90704 Resistance to GRD 2 2.2 CG 7 × ICGVSM 90704 Resistance to GRD 6 6.7 ICGV 07368 × ICGV 06420 High & low oil content 12 13.3 ICGV 07166 × ICGV 06188 High & low oil content 10 11.1 ICGV 06420 × SunOleic 95A* O/L ratio 13 14.4 Intraspecific marker-assisted backcrossing (MABC) populations ICGV 91114 × GPBD 4 Rust resistance 15 16.7 JL 24 × GPBD 4 Rust resistance 17 18.9 ICGV 03042 × SunOleic 95A O/L ratio 12 13.3 ICGV 02411 × SunOleic 95A O/L ratio 15 16.7 ICGV 05141 × SunOleic 95A O/L ratio 12 13.3 ICGV 05100 × SunOleic 95A O/L ratio 10 11.1 Activity 2,3: Genomic resources
    • 10. Details of different linkage maps TAG 24 x ICGV 86031 (RIL-1) ICGS 76 x CSMG 84-1 (RIL-2) ICGS 44 x ICGS 76 (RIL-3) TAG 24 x GPBD 4 (RIL-4) TG 26 x GPBD 4 (RIL-5) Marker loci mapped 191 119 83 188 181 Linkage groups 22 18 16 20 20 Marker loci/LG 2-19 2-14 2-10 2-17 2-15 Avg. marker loci/LG 8 7 5 9 8 Total map distance (cM) 1785 888 2203 1922 1964 Avg. distance/LG (cM) 81.15 59.2 110.1 96.1 85.4 Avg. inter-locus distance (cM) 9.54 11.88 15.47 10.23 9.9 Five genetic maps maps for 4x groundnut TAG 2009, 118:729-739; TAG 2010, 121:971-984; Field Crops Res 2011, 122:49-59; TAG 2011 122:1119-1132; Mol Breeding 2012, DOI 10.1007/s11032-011-9661-z; Mol Breeding 201 2, DOI 10.1007/s11032-011-9660-0.
    • 11. LG_AhI LG_AhII LG_AhIII LG_AhIV LG_AhV LG_AhVI LG_AhVII LG_AhVIII LG_AhIX LG_AhX LG_AhXI LG_AhXII LG_AhXIII LG_AhXIV LG_AhXV LG_AhXVI LG_AhXVII LG_AhXVIII LG_AhXIX LG_AhXX Reference consensus genetic map Marker loci mapped 897 Total map distance 3863.6 (cM) Map density 4.42 (cM) Activity 2,3: Genomic resources
    • 12. BC1 A. hypogaea × amphidiploid CIRAD, France RIL-1 A. hypogaea ICRISAT, India RIL-2 A. hypogaea ICRISAT, India RIL-3 A. hypogaea ICRISAT, India RIL-4 A. hypogaea ICRISAT, India RIL-5 A. hypogaea ICRISAT, India RIL-6 A. hypogaea GAAS, China RIL-7 A. hypogaea GAAS, China RIL-8 A. hypogaea GAAS, China RIL-9 A. hypogaea USDA-ARS, USA RIL-10 A. hypogaea USDA-ARS, USA TF5 A. hypogaea × amphidiploid EMBRAPA, Brazil SKF2 A. hypogaea KDRI, Japan NYF2 A. hypogaea KDRI, Japan High density consensus genetic map Marker loci mapped 3,693 Total map distance (cM) 2,651 Map density (loci/cM) 1.39
    • 13. Consensus QTL map for drought tolerance traits Mol Breed 2012, 32:757-772 Cluster 6 Cluster 13 Cluster 11 Cluster 1 Cluster 12 Cluster 2 Cluster 7 Cluster 14 Cluster 16 Cluster 4 Cluster 5 Cluster 8 Cluster 9 Cluster 10 Cluster 3 Cluster 15
    • 14. How yield and traits QTL co-map in cultivated peanut ? QTL cluster for: Leaf expansion Leaf area Leaf conductance
    • 15. Consensus QTL map for Rust and LLS resistance Major QTL for LLS Major QTL for rust Common QTLs for LLS and rust Mol Breed 2012, 32:773-788
    • 16. Parental screening of mapping populations for disease resistance * Selected based on parental polymorphism # F6 RIL phenotyped for ELS Populations Markers screened Poly. markers Disease resistance Locations ICGV 93437 X ICGVSM 95342* 1000 61 Rust resistance Malawi ICGV 93437 X ICGV 94114 1000 56 Rust resistance Malawi CG7 X ICGVSM 90704* 1000 119 GRD Malawi CHALIMBANA X ICGVSM 90704 1000 84 GRD Malawi ROBUT 33-1 X ICGV 95714* 1000 111 ELS Malawi ICGV 93437 X ICGV 95714 1000 24 ELS Malawi ICGV 86124 X ICG 7878 # 510 31 ELS Niamey GRD : Groundnut rosette disease ELS : Early leaf spot
    • 17. Marker-assisted breeding for rust resistance Promising introgression lines are under replicated yield assessment trial Cross Number of lines evaluated * Lines with mean disease score of 2 * ICGV 91114 x GPBD 4 57 25 JL 24 x GPBD 4 69 23 TAG 24 x GPBD 4 103 29
    • 18. Some of the trainees • 3 scientists and 3 technicians trained in drought phenotyping and logisticics of advancing breeding populations • Mr Adama Zongo ( PhD student from Burkina Faso) has undergone 3- month training at ICRISAT Bamako and is currently being trained at Niamey for his thesis research on MAS for ELS. • Mr. Richard Oteng Frimpong from SARI Ghana spent a month at the genomics centre of excellence at ICRISAT Center familiarising with the new tools and techniques and performed molecular characterisation of 50 advanced breeding lines introduced from ICRISAT Bamako • Omar Halilou, Philippo Machamba trained on drought phenotyping • Etc… Capacity building Data Management Phenotypic and genotypic data mostly delivered See Patrick Okori’s presentation Monday pm
    • 19. Acknowledgments: Partners, Farmers, TL 1 Team, GCP, BMGF Thank you

    ×