Interconexión de redes y competencia

  • 255 views
Uploaded on

Ciclo de Conferencias: Reacting to the crisis: the new regulatory environment. …

Ciclo de Conferencias: Reacting to the crisis: the new regulatory environment.
Patrick Rey
Université de Toulouse. Francia.
Madrid, 5 de abril de 2011

More in: Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
255
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
0
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Network interconnection and competition Patrick Rey IE Business School and Fundación Ramón Areces Madrid, 5 April 2011
  • 2. Introduction
    • Topics
      • Interconnection (wholesale level)
        • connectivity (capacity, QoS agreements, net neutrality)
        • access prices (termination charges)
      • Competition (retail level)
        • linear/nonlinear tariffs (large/small consumers)
        • on-net pricing (club effects)
        • caller pays/receiver pays principles (consumers/websites)
        • [entry / investments]
      • Positive / welfare analysis
  • 3.
    • Issue: whether to connect / compatibility or quality
        • (Katz-Shapiro AER 85, Farrell-Saloner Rand 85)
      • Snowballing, club effects (small shocks / large impact)
      • Inertia, lock-in
        • role of installed bases
        • switching costs?
      • Coordination problems
        • positive: coordination devices
        • normative (Pareto criterion; heterogeneity?)
      • “ one-way” interconnection
        • backward/forward compatibility, downgraded version (read-only)
    Connectivity strategies
  • 4.
    • Large networks are less eager to maintain connectivity
      • Trade-off: degraded interconnection
        • has a negative direct effect (network is less attractive)
        • has an indirect strategic effect (rival also less attractive)
      • Strategic effect can dominate is network is large enough
        • refusing / degrading interconnection (WC/MCI/Sprint)
        • developing closed / proprietary standards (iTunes)
      • Large? Installed base of locked-in customers, coordination
    Connectivity strategies
  • 5. Connectivity strategies
    • Illustration: the WorldCom – MCI merger
        • Crémer-Rey-Tirole JIE 2000
      • Pre-merger: 4 backbones (WorldCom, MCI, Sprint, GTE)
        • all backbones have similar installed bases (1/4, say)
        • pre-merger, all backbones aim at perfect connectivity
      • Merger between 1 and 2 (installed bases ½,¼,¼)
        • -> three connectivity strategies:
        • accommodation: maintain connectivity (1,1,1)
        • global degradation (½, ½ , ½ ): never attractive
        • targeted degradation + limit on transit (¾ , ½ ,1): attractive
  • 6. Interconnection and competition
    • One-way versus two-way access
      • One-way access
        • upstream: incumbent controls a bottleneck (e.g., local loop)
        • downstream: incumbent competes with rivals
        • -> essential facility doctrine, access regulation
      • Two-way access
        • network operators compete for subscribers
        • but need each other to complete calls
        • -> competitive bottlenecks
  • 7. Interconnection and competition
    • Cooperation or competition?
      • Interoperability requires cooperation
        • standards, protocols (QoS)
        • interconnection agreements
      • … between competitors
        • “ cooperation” may prevail over “competition”
        • lack of cooperation from incumbents may hurt new entrants
      • -> impact of interconnection prices on retail competition
  • 8. Mobile to mobile termination
    • Competing bottlenecks
      • Wholesale: bilateral interconnection agreements
        • perfect connectivity (no club effect)
        • reciprocal termination charge (access price): a
      • Retail: price competition
        • linear / non-linear (two-part) tariffs (prepaid/post-paid, subsidy)
        • on-net pricing (friends and family)
        • prices for sending and/or for receiving (US/EU)
  • 9. Framework
    • Cost structure
      • Origination and termination costs: c o , c t
      • Reciprocal access charge a
        • on-net cost: c = c o + c t
        • off-net cost: c = c o + a = c + m , where m = a – c t
    Network 2 Network 1 c o + c t C 2 C 1 c t – a
  • 10. Linear retail prices Armstrong ( EconJ 1998), Laffont-Rey-Tirole ( Rand 1998)
    • The access charge as a “collusive” device
      • Access mark-up m = a – c t inflates the “perceived” marginal cost
      • average marginal cost for network i : c i = c + α j m
      • In (symmetric, imperfectly competitive) equilibrium
      • price based on perceived cost : p = p e ( c + m / 2 )
        • If access prices are set unilaterally: double marginalization
        • If bilateral negotiation of a reciprocal charge: collusive device
        • a high enough termination mark-up sustains monopoly prices
      • Note: no termination revenue or deficit if “balanced pattern”
        • [even if asymmetric market shares: α 1 α 2 m = α 2 α 1 m … ]
        • Compare with “bill and keep”
  • 11. Non-linear (two-part) tariffs Laffont-Rey-Tirole ( Rand 1998)
    • Two-part tariff ( F i ,p i )
      • Termination mark-up still drives up usage prices
      • p i = c i = c + α j m
      • But competition for subscribers dissipates profits
        • “ waterbed effect” (Paul Geroski for F2M termination)
        • lower fixed fees, handset subsidies, …
      • If total demand is elastic
        • access charge is “neutral” for profit
        • -> termination charge no longer acts as a collusive device
        • but decreases consumer surplus / total welfare (wrong signal)
  • 12.
    • Demand side
      • Full participation α 1 + α 2 = 1
      • Balanced calling pattern
        • each user calls all users with equal probability
        • demand for calls per subscriber is q(p) , indirect utility v(p)
      • -> variable surplus is w i = v(p i ) – F i
      • Horizontal differentiation à la Hotelling (differentiation t )
      • -> operator i 's market share is α i = 1/2 + (w i - w j )/2t
    Full participation / waterbed effect
  • 13.
    • Termination rate does not affect industry profit
      • Usage price to average marginal cost: p = c + m /2
      • Termination revenue dissipated on fixed fee: F = f + t – m /2
        • Consider stealing a caller from network rival network
        • retail profit: neutral since price p ∗ covers average cost c + m /2
        • termination between own subscribers: saves & loses mq ∗ /2
        • termination from rival’s subscribers: brings mq ∗ /2
        • -> net gain of mq ∗ /2 : the fixed-fee is reduced by this amount
      • Industry profit is independent of m : 2 Π = t
    Full participation / waterbed effect
  • 14. On-net pricing Laffont-Rey-Tirole ( Rand 1998), Gand-King ( EconL 2001)
    • Reintroduces club effects
      • Perfect connectivity
      • But, for same prices, users favour larger networks
    • Similar to compatibility / connectivity analysis
      • Fiercer competition among similar networks
      • Profits are maximal for a termination charge
      • … below cost
      • However, also exacerbates the risk of “tipping”
  • 15. Receiver pays regime Laffont-Marcus-Rey-Tirole ( Rand 2003)
    • Two types of users
      • Mobile in the US: senders/callers vs receivers/callees
      • Internet: websites send traffic / consumers receive it
    • Two prices
      • price for receiving traffic p r , demand D c (p r )
      • price for sending traffic p s , demand D w (p s )
      • -> volume of traffic (“balanced pattern”) D c (p r ) x D w (p s )
  • 16. Receiver pays regime Laffont-Marcus-Rey-Tirole ( Rand 2003)
    • The off-net cost pricing principle
      • For network i
      • π i = ( p i s + p i r – c ) D i w D i c (on-net)
      • + ( p i r + a – c t ) D j w D i c (incoming off-net)
      • + ( p i s –a – c o ) D i w D j c (outgoing off-net)
      • = [ p i s – ( c o + a )] D i w D c + [ p i r – ( c t – a )] D i c D w
      • Under perfect competition, prices reflect off-net costs
      • p s = c o + a , p r = c t – a
  • 17. Receiver pays regime Laffont-Marcus-Rey-Tirole ( Rand 2003)
    • Pretty robust principle
      • Arbitrary number of networks
      • Mixed traffic patterns
      • Customer cost heterogeneity: cost c t k , c o k for group k
      • Quality of service: p r+ = c t + – a , p s+ = c o + + a
    • Welfare implications (Ramsey pricing)
  • 18. Policy puzzle
    • Theory: when networks compete in non-linear tariffs
      • Profits are not affected by the termination charge
        • LRT Rand 1998
        • heterogeneous users (Dessein Rand 2003, Hahn IJIO 2004)
      • Or maximal for termination charges at or below cost
        • Gans-King EL 2003
        • elastic demand (Dessein Rand 2003, Schiff RNE 2008)
        • asymmetric networks Carter-Wright ( RIO 2003)
    • Practice
      • Operators favour termination rates above cost
      • While regulators push for low rates
        • EU recommendation: termination rates at LRIC by 2012
        • France: from 14,94/17,89 c€/mn in 2004 to 3,0 / 3,4 in January 2011
  • 19. GLIDE PATH
  • 20. Revisiting MTM termination
    • Link between FTM and MTM rates
      • Armstrong and Wright 2008
      • Arbitrage (“hedgehogs”) / regulatory policies
      • FTM: partial waterbed effect / double marginalization (unilateral setting)
    • Asymmetric competition and entry barriers
      • Cazalda-Valletti 2008, Hoernig 2007 (predation), Lopez-Rey 2009
    • Users’ expectations
      • Lopez-Hurkens 2010
    • Here: demand heterogeneity (heavy / light users)
      • call imbalance and different participation elasticities
  • 21. Main insights Jullien-Sand Zantman-Rey (2010)
    • Assume that consumers exhibiting traffic deficit … have also a more elastic participation
      • large users churn but always participate
      • small users mostly receive calls and may not participate
        • pre-pay/post-pay, large/small users in post-pay, teenagers...
    • Then
      • profits are maximal for MTM termination rates above cost
      • welfare is maximal for MTM termination rate
        • also above cost
        • but below the level that maximizes profits
  • 22.
    • Light users
      • Do not call but receive calls
      • Elastic (symmetric) subscription demand β i = β ( P i ,P j )
        • aggregate demand β T ( P ) = 2 β i ( P,P ) is decreasing in P
        • replacement ratio γ ( P ) = ∂ β 2 ( P,P )/ ∂P 1 ╱( -∂ β 1 ( P,P )/ ∂P 1 ) ∈ [0,1[
    • Heavy users
      • Total participation of 1 + β T
        • -> heavy users’ surplus becomes w i = (1+ β T )v(p i ) – F i
      • (they benefit from being able to call more light users
      • Full participation -> operator i 's market share is α i = 1/2 + (w i - w j )/2t
    Heavy and light users
  • 23.
    • Symmetric equilibrium
      • Network i 's profit is equal to
      • Π i = α i [( 1+ β T )( p i - c ) q ( p i ) – ( α J + β j ) mq ( p i ) + F i – f ] + ( α i + β i ) α j mq ( p j ) + β i ( P i - φ )
      • The usage price maximizes the surplus from trade (LRT)
      • p 1 = p 2 = p ∗ = c + m /2 ; q ∗ = q ( p ∗ )
      • The equilibrium subscription fees are then
      • F ∗ = f + t + ( β T - 1) mq ∗ /2
    Equilibrium: heavy users
  • 24.
    • Consider stealing a caller from network rival network
      • No light user ( β T = 0 )
        • net gain of mq ∗ /2
        • the fixed-fee is reduced by this amount
      • With light users ( β 1 = β 2 = β T /2 > 0 ) , the reduction is smaller
        • loses termination revenue from own light users: ( β T /2) mq ∗
        • the fixed fee is augmented by this amount
    Intuition
  • 25. Equilibrium: light users
    • Network i's profit then writes as
      • Π i = (1/2)[ F ∗ - f + (1/2 + β i ) mq ∗ + ( β i - β j )( m /2) q ∗ ] + β i ( P i - φ )
    • Optimizing with respect to P i amounts to maximize
      • G(P i ,P j ) = ( P i - C ) β i ( P 1 ,P 2 ) – C ∗ β j ( P 1 ,P 2 )
      • C = φ - 3 mq ∗ /4 represents the direct opportunity cost of attracting light users, net of the benefits from calls received on-net (half the charge) and off-net (full charge)
      • C ∗ = mq ∗ /4 represents the opportunity cost of the rival’s light users corresponding to the termination deficit (the price charged for calling these light users covering only half of the termination charge)
  • 26. Equilibrium: light users
    • Equilibrium subscription for light users
      • where ε ( P ) denotes the own price elasticity of light users' subscription demand
  • 27. Impact of termination rates
    • Increasing the termination rate has two effects
      • intensifies competition for light users via two channels
        • waterbed : light users generate larger net termination revenue
        • opportunity cost : preventing the other network from attracting a light user saves on termination costs
      • reduces competition on the heavy users
        • the cost of losing a heavy user to competitor is weakened by the larger termination revenue that the calls to light users will generate (again because there is no equivalent volume of calls from light users to this heavy user)
  • 28. Equilibrium profit
    • The operators’ profit is
      • 2 Π ∗ = t + ( P ∗ - φ + mq ∗ ) β T ( P ∗ )
    • P ∗ depends on m only through access revenue r = mq∗
    • -> the operators’ profit depends only on the access revenue r and is maximal when the termination markup is at monopoly level
      • m R = argmax m mq ( c+m /2)
  • 29. Equilibrium surplus
    • Light users' surplus is increasing in access revenue r
    • Effect on heavy users is ambiguous
      • heavy users' net variable surplus is S H = (1 + β T ) v ( p ∗ ) – f – t – ( β T - 1) mq ∗ /2
      • -> increasing the termination rate
      • raises network externalities from light users (through r = mq ∗ and β T )
      • but also raises usage prices: p ∗ = c + m /2
      • -> for m small, increasing m raises heavy users' surplus if light users' subscription demand is very elastic or if heavy users' usage surplus is not very elastic
    • -> total welfare is maximal for a termination markup that is positive but smaller than the monopoly level
  • 30. Extension: on-net/off-net
    • With on-net/off-net price discrimination the analysis is similar with additional effects
      • usage price = marginal cost (on-net and off-net)
      • revenue from light users' received calls is smaller (no gain from on-net calls)
      • tariff-mediated network effects intensify competition on heavy users
      • additional effect of light users on tariff-mediated network effects
    • Welfare is maximal for a positive termination mark-up
    • Profit is maximal for a termination mark-up that may be smaller or even negative
  • 31. Extension: FTM termination rate
    • Each subscriber generates an extra revenue from FTM termination
      • waterbed effect on both users
        • both subscription fees decrease
        • reduction can be larger for either type of user
      • the presence of light users
      • … limits the waterbed effect on heavy users
      • industry profit increases
  • 32. Conclusion
    • The level of termination rate has contrasted effects on the intensity of competition for different types of consumers
      • high termination rates benefit small users due to more competition than even the waterbed effect suggests
      • high termination rates reduce the intensity of competition for large users
    • Consistent theory explaining a positive effect of TR on profit
    • Regulation is useful but the rate should be set above cost
    • How much above costs? -> need for empirical work
    • Effect of Receiver Pays Principle?