Cinemática

  • 361 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
361
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
22
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Cinemática Prof. Fabricio Scheffer
  • 2. Conceitos Básicos de Cinemática Velocidade Média (Vm) dtotal Vm  t total V  V0 Vm  2 Geral (MRU, MRUV,MQL) d  Vm .t Só MRUV ( a constante) 3,6    km / h   m / s  3,6
  • 3. Aceleração Componente Escalar ou Tangencial (at) Serve para variar o módulo da velocidade no decorrer do tempo. V at  t OBS.:É sempre paralela ao vetor velocidade. Quando tem o mesmo sentido aumenta o módulo E se tiver sentido oposto diminui o módulo.  at  at  v  v
  • 4. Componente Centrípeta ou Radial (aC) Serve para variar a direção da velocidade no decorrer do tempo. V2 aC  R OBS.: É sempre perpendicular ao vetor velocidade, apontando sempre para o centro da trajetória circular.  v Unidade no S.I. m/s2  aC
  • 5. Movimento Retilíneo e Uniforme (MRU) Classificação 1.Trajetória retilínea. aC = 0 FC = 0 2.Módulo da velocidade constante. 3.Aceleração resultante nula. at = 0 a=0 FR = 0 Vm =V d v d = Vm . t t Ft = 0 d = V. t
  • 6. Gráficos do MRU x x Obs.: x = x0 + V.t é uma função do 1o grau Inclinação= t t V positiva e constante V negativa e constante v v t t
  • 7. Velocidade relativa – Relatividade de Galileu I) Móveis com o mesmo sentido II) Móveis com sentidos opostos Cálculo do tempo de encontro
  • 8. Velocidade Resultante 1.A favor da correnteza (descendo o rio) VR = VB + VC 2. Contra a correnteza (subindo o rio) VR = VB - VC Cálculo do tempo 3. Perpendicular à correnteza (atravessando o rio)
  • 9. Movimento Retilíneo e Uniformemente Variado (MRUV) Classificação 1.Trajetória retilínea. aC = 0 FC = 0 2.Módulo da velocidade varia uniformemente. at ≠ 0 Ft ≠ 0 3.Aceleração constante e não nula. a = Const ≠ 0 FR = Const ≠ 0 Função Horária da Velocidade at  V t ou v  v0  a  t
  • 10. Propriedades do Gráfico V x t v v A  B  b   h 2 t Propriedade 1: Inclinação Δv inclinação  a Δt t  Δy     Δx 
  • 11. Propriedades do Gráfico V x t v v A  B  b   h 2 t Propriedade 2: Área (Y. X) v  v 0   t d 2 t
  • 12. Cálculo da distância no MRUV v  v 0   t d d  Vm  t Conclusão Vm ou 2 v  v 0   2 Só no MRUV
  • 13. Equação de Torricelli
  • 14. Função Horária dos espaços a  t2 x  x0  v0  t  2 Propriedade – Inclinação
  • 15. Movimento de Queda Livre (MQL) e Projéteis Características 1.Trajetória Retilínea; 2.A aceleração escalar é constante e é a gravidade do planeta; 3. MQL = MRUV FR = P a=g Equações v 0  v  t h 2 d=h v  v0  g  t 2 v2  v0  2  g  h Para hmáx ou abandonado h  5t2
  • 16. Obs.: No vácuo todos os corpos, soltos simultaneamente de uma mesma altura, chegam ao solo ao mesmo tempo e com a mesma velocidade. Isso acontece sempre, quaisquer que sejam suas massas, formatos ou material de que sejam feitos. Queda Livre Queda com ar
  • 17. Corpos abandonados no Vácuo
  • 18. Queda livre ou Lançamento para baixo Lançamento para cima  v  v acelerado +  g + 0  ag hmáx  v Retardado +  g -
  • 19. Propriedade do Gráfico V x t v h h h h h h h h h h h h h h h h t 2t 3t 4t t Note a proporção direta e quadrática entre h e t. t 2t 3t 4t 5t h 4h 9h 16h 25h
  • 20. Simulação de gravidade zero
  • 21. Lançamento Horizontal Ocorrem dois movimentos simultaneamente: um uniforme na horizontal e um acelerado na vertical
  • 22. Horizontal: o movimento é uniforme (MU), pois o corpo percorre distâncias iguais em tempos iguais. ax  0 D x  Vx  t Vertical: o movimento é uniformemente variado (MUV), pois o corpo está na vertical sob ação da gravidade. ay  g Vy  g  t g t h 2 2 IMPORTANTE: O tempo de queda só depende da altura (h), ou seja, a velocidade horizontal (Vx), não influencia nesse tempo.
  • 23. Lançamento Oblíquo
  • 24. Movimento Circular e Uniforme (MCU) O movimento circular e Uniforme apresenta Características: •Trajetória: circunferência; •Velocidade Vetorial: constante em módulo e variável na direção e sentido; •Aceleração Tangencial: nula; •Aceleração Centrípeta: constante em módulo e variável na direção e  sentido; V  •Freqüência e Período: constantes;  aC V  aC  aC  V R  aC  V
  • 25. Conceitos: Velocidade Linear ou Tangencial (V) A freqüência (f ) representa o número de voltas que o móvel efetua por unidade de tempo: n f  t O período (T) representa o intervalo de tempo para executar uma volta. No S.I., o período é medido em segundos (s). t T n 1 f  T É a razão entre a distância percorrida pelo móvel e o tempo gasto para percorrê-la. V d t V 2R T V  2Rf Velocidade Angular (w) É a razão entre o ângulo central descrito pelo móvel e o tempo gasto para descrevê-lo. 2 w T w  2f Relação entre V e w V w R
  • 26. Aceleração Centrípeta O vetor aceleração centrípeta, ou normal, apresenta as seguintes características: · Módulo: V2 aC  R Direção: radial, ou seja, perpendicular à direção do vetor velocidade; Sentido: dirigido para o centro da trajetória ou em termos de w: aC  w  R 2
  • 27. Transmissão de MCU Disco 1 2 R1 f1 T1 V1 w1 aC1 > = = > = > R2 f2 T2 V2 w2 aC2
  • 28. Correia R1 > f1 < T1 > V1 = w1 < aC1 < R2 f2 T2 V2 w2 aC2