Institute for Sustainability and
OPTIMIZATION OFInstitute for Sustainability and
Innovation in Structural Engineering
Fili...
Upcoming SlideShare
Loading in …5
×

SIF 2014 - Structures in Fire 2014 Shangai

206 views
162 views

Published on

OPTIMIZATION OF THE TALL BUILDINGS STRUCTURAL SYSTEM AGAINST PROGRESSIVE COLLAPSE.

Vertical bracing systems and outriggers play a decisive role on the progressive collapse susceptibility.

In relation to a steel tall building. Evaluation of structural performances of steel tall building is performed thought full non-linear analyses on finite element models.

Performances of initial and optimized configuration are compared.

Published in: Engineering
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
206
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

SIF 2014 - Structures in Fire 2014 Shangai

  1. 1. Institute for Sustainability and OPTIMIZATION OFInstitute for Sustainability and Innovation in Structural Engineering Filippo Gentili Franco Bontempi OPTIMIZATION OF THE TALL BUILDINGS STRUCTURAL SYSTEM AGAINST PROGRESSIVE COLLAPSEfilippo.gentili@uc.pt franco.bontempi@uniroma1.it INTRODUCTION AGAINST PROGRESSIVE COLLAPSE Vertical bracing systems and outriggers play a Fire Scenario 1 filippo.gentili@uc.pt franco.bontempi@uniroma1.it Vertical bracing systems and outriggers play a decisive role on the progressive collapse susceptibility. Scala A Ascensore 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Fire Scenario 1 Scala A Ascensore 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Scala A Ascensore 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 In relation to a steel tall building (Figure 1). Evaluation of structural performances of steel tall building is performed thought full non-linear analyses on finite element models Ascensore Scala A Scala B IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 270 IPE 300 IPE 270 IPE270 IPE270 IPE300 IPE270 HEA240 HEM280 HEA240IPE270 IPE300 IPE270 IPE270 HEA 240 IPE 270 IPE270 IPE300 IPE270 IPE270 IPE270 IPE300 IPE270 IPE270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270IPE 270 IPE270 IPE270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 160 m Frame B Ascensore Scala A Scala B IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 270 IPE 300 IPE 270 IPE270 IPE270 IPE300 IPE270 HEA240 HEM280 HEA240IPE270 IPE300 IPE270 IPE270 HEA 240 IPE 270 IPE270 IPE300 IPE270 IPE270 IPE270 IPE300 IPE270 IPE270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270IPE 270 IPE270 IPE270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 35 m Ascensore Scala A Scala B IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 270 IPE 300 IPE 270 IPE270 IPE270 IPE300 IPE270 HEA240 HEM280 HEA240IPE270 IPE300 IPE270 IPE270 HEA 240 IPE 270 IPE270 IPE300 IPE270 IPE270 IPE270 IPE300 IPE270 IPE270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270IPE 270 IPE270 IPE270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 analyses on finite element models Performances of initial (Figure 2) and optimized (Figure 3) configuration are compared. Figure 1 – Case Study: Three-dimensional view and Fire Scenarios Figure 2 – Initial Configuration: In blue vertical bracing systems Figure 3 – Optimized Configuration: in red the added vertical bracing systems in light blue the outrigger at 29th floor Fire Scenario 2Frame A 35 m OPTIMIZATION PROCEDURE in light blue the outrigger at 29 floor Heated FireSteel FireSeveral configurations (Figure 4) have been A1 A2 A3 A4 A5Heated Columns Fire Resistance No. Cases Avg Min Max 1 8 180 180 180 2 7 180 180 180 Conf. Steel Mass [ton] Fire Resistance [min] A1 799 75 A2 857 75 Several configurations (Figure 4) have been assessed. The displacement on the top floor (1 meter) has been considered as indicator of the global colapse. A1 A2 A3 A4 A5 2 7 180 180 180 3 6 143.6 80 180 4 5 88.4 78 103 5 4 67.5 66 69 A2 857 75 A3 877 180 A4 877 180 A5 877 180 The collapse can be avoided with outriggers (Table 1). The position has been varied in order to minimize lateral displacement. Table 1 – Mass and Fire Table 2 – Fire Resistance ofto minimize lateral displacement. Spatial extension of fire has been increased in the best configurations (Table 2). Figure 4 – Sectional Configurations considered for Frame ATable 1 – Mass and Fire Resistance of Frame A Table 2 – Fire Resistance of Frame A5 increasing fire extension FIRE STRUCTURAL PERFORMANCES ANALSYS the best configurations (Table 2). Three–dimensional spatial models have been 48 49 50 51 52 53 54 55 56 57 58 59 60 48 49 50 51 52 53 54 55 56 57 58 59 60 48 49 50 51 52 53 54 55 56 57 58 59 60 I Time [min] Collapsed Floor Area [m2] Collapsed Floor Area Percentage [%] Original Optimized Original Optimized Three–dimensional spatial models have been used. An explicit dynamic solver allowed to trace Scala A Ascensore Ascensore Scala A Scala B IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270 IPE270 IPE300 IPE270 IPE270 IPE270 IPE300 IPE270 IPE270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE270 IPE270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Scala A Ascensore Ascensore Scala A Scala B IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270 IPE270 IPE300 IPE270 IPE270 IPE270 IPE300 IPE270 IPE270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE270 IPE270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Scala A Ascensore Ascensore Scala A Scala B IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270 IPE270 IPE300 IPE270 IPE270 IPE270 IPE300 IPE270 IPE270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE270 IPE270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 I N I T I A [min] Original Optimized Original Optimized 60 130.26 0.00 11.21 0.00 75 208.71 76.71 17.97 6.60 90 325.21 76.71 28.01 6.60 An explicit dynamic solver allowed to trace down the propagation of failures. Reduction in displacements of Initial and IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 270 IPE 300 IPE 270 IPE270 IPE270 IPE300 IPE270 HEA240 HEM280 HEA240IPE270 IPE300 IPE270 IPE270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 270 IPE 300 IPE 270 IPE270 IPE270 IPE300 IPE270 HEA240 HEM280 HEA240IPE270 IPE300 IPE270 IPE270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 270 IPE 300 IPE 270 IPE270 IPE270 IPE300 IPE270 HEA240 HEM280 HEA240IPE270 IPE300 IPE270 IPE270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 48 49 50 51 52 53 54 55 56 57 58 59 60 48 49 50 51 52 53 54 55 56 57 58 59 60 48 49 50 51 52 53 54 55 56 57 58 59 60 A L O P120 350.21 230.31 30.16 19.83 150 No Con. 397.22 No Con. 34.21 Reduction in displacements of Initial and Optimized (Figure 5 top and bottom respectively) Configuration is considerable. Table 3 – Comparison of collapsed floor area between Original and Optimized Configuration for Fire Scenario 1 Scala A Ascensore Ascensore Scala A Scala B IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270 IPE270 IPE300 IPE270 IPE270 IPE270 IPE300 IPE270 IPE270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE270 IPE270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Scala A Ascensore Ascensore Scala A Scala B IPE 270 HEA 240 IPE270 IPE300 IPE270 IPE270 IPE270 IPE300 IPE270 IPE270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE270 IPE270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Scala A Ascensore Ascensore Scala A Scala B IPE 270 HEA 240 IPE270 IPE300 IPE270 IPE270 IPE270 IPE300 IPE270 IPE270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE270 IPE270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 P T M I Z Also the portion of building, involved in the collapse, changes substantially (Table 3). Figure 5 – Displacement of the top floor over 1m of Initial (Figure 5 top) and Optimized (Figure 5 bottom) Configuration for Fire Scenario 1 IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 270 IPE 300 IPE 270 IPE270 IPE270 IPE300 IPE270 HEA240 HEM280 HEA240IPE270 IPE300 IPE270 IPE270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 270 IPE 300 IPE 270 IPE270 IPE270 IPE300 IPE270 HEA240 HEM280 HEA240IPE270 IPE300 IPE270 IPE270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 270 IPE 300 IPE 270 IPE270 IPE270 IPE300 IPE270 HEA240 HEM280 HEA240IPE270 IPE300 IPE270 IPE270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Z E D Non-linear push-over analyses are conducted. A triangular lateral load has (Figure 5 bottom) Configuration for Fire Scenario 1 (Eq. 1) ROBUSTNESS AND EFFICIENCY INDICES (Eq. 3)conducted. A triangular lateral load has been applied at ambient temperature and after 30, 60 and 90 min fire exposure. (Eq. 1) (Eq. 2) (Eq. 3) (Eq. 4) 1.11 1.40 1.19 1.5 2 1.00 0.72 0.710.75 1A robustness index at ambient (Eq. 1) and elevated (Eq. 2) temperature, function of stiffness K, strength R and 1.06 1.11 1.19 0.5 1IE [-]0.50 0.12 0.27 0.25 0.5 IR [-] function of stiffness K, strength R and ductility μ is proposed (Figure 6). A quantitative evaluation (Figure 7) of the performance improvement due to 0 No Fire 30 min 60 min 90 min Fire Scenario 1 0.12 0.00 0 No Fire 30 min 60 min 90 min Initial Optimized the performance improvement due to structural measures is achieved through the definition of an efficiency index (Eq. 3 and Eq. 4). Figure 7 – Evolution of Efficiency IndexFigure 6 – Evolution of Robustness Index3 and Eq. 4). Figure 7 – Evolution of Efficiency Index Str StroNGER S.r.l. Figure 6 – Evolution of Robustness Index Str o N GER www.stronger2012.com StroNGER S.r.l. Structures of the Next Generation Energy harvesting and Resilience

×