• Save
Sapienza trasborg-25-06-13
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Sapienza trasborg-25-06-13

  • 343 views
Uploaded on

Development of a Blast and Ballistic Resistant Insulated Wall Panel. ...

Development of a Blast and Ballistic Resistant Insulated Wall Panel.

Accidental and intentional detonations of high explosives are an unfortunate reality for not only military facilities, but any building. In the United States, designing for blast loads is required of all military and government structures. Additionally, there has been a recent emphasis on constructing energy efficient, sustainable buildings. Insulated concrete wall panels can meet both requirements due to the blast resistance of reinforced concrete and the thermal properties of the interior insulation layer. This research project focuses on improving the response of an insulated concrete panel to explosions at both larger and small scaled distance, as well as the ballistic resistance of the panel. Emphasis is placed on innovative, emulative reinforcement detailing to improve far scale explosions, while shock resistant materials are utilized within the insulation layer to improve small scale explosions and ballistic response. Static tests are conducted under both point and uniform loading to obtain resistance functions to predict the dynamic response of the insulated panel. Experimental, numerical, and analytical results will be discussed.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
343
On Slideshare
343
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
0
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 1 Patrick Trasborg, Ph.D. Student – Lehigh University DEVELOPMENT OF A BLAST AND BALLISTIC  RESISTANT INSULATED WALL PANEL Advisor: Clay Naito, Ph.D., P.E. – Lehigh University NSF PD 08‐1637 2013 Sapienza Università di Roma 
  • 2. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 2 Background  BS – Civil/Environmental Engineering Lehigh 2010  MS ‐ Structural Engineering Lehigh 2012 2 http://www.lehigh.edu/~incee/images/5M%2 0lb.%20Testing%20Machine.jpg http://lehigh.edu/~incee/images/ATLSS‐Panoramic.jpg
  • 3. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 3 Background  Currently: Ph.D. Student Lehigh University  Advisor: Professor Clay Naito  Project: Development of a Blast and Ballistic  Resistant Insulated Wall Panel  Importance:  Blast Design for Occupants’ Safety  Life Cycle and Sustainability Requirements 3
  • 4. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 4 Overview  Precast concrete/insulated wall panels  Far‐field detonations  Design  Methods to improve response  Small panel tests  Large Panel tests  Close‐in detonations  Design  Numerical models  Methods to improve response  Ballistic demands  Design  Methods to improve response 4
  • 5. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 5 Precast Concrete Parking Structures / Office Buildings /  Residential / Manufacturing Precast Concrete Construction • Cost Effective  • Energy Efficient • High Quality • Rapid Construction 5
  • 6. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 6 Insulated Wall Panel  Exterior Wythe with Architectural Features  Insulation Foam – XPS, EPS, PIMA  Interior Wythe with Wall‐to‐Structure  Connections  Shear Ties to Connect Interior and Exterior Wythes 6
  • 7. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 7 Overview  Precast concrete/insulated wall panels  Far‐field detonations  Design  Methods to improve response  Small panel tests  Large Panel tests  Close‐in detonations  Design  Numerical models  Methods to improve response  Ballistic demands  Design  Methods to improve response 7
  • 8. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 8 Blast Design of Concrete Components 8 Far‐field Detonation Known Threat
  • 9. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 9 Blast Design of Concrete Components 9 Differential Equation of Motion Approximated as a single degree of freedom (SDOF) Solve an “equivalent” SDOF system
  • 10. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 10 Development of Resistance Function 10 Idealized RC Resistance Function Plastic Hinge Formation
  • 11. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 11 Correlating Panel Response to Damage 11  Defined in terms of:   Support rotation, θ  Displacement Ductility, μ yield ultimate   yield ultimate                fCSpan 1 tan Current Response  Limits for Structural  Members
  • 12. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 12 Correlating Panel Response to Damage 12 Defined in terms of: • Support Rotation, θ • Displacement Ductility, μ
  • 13. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 13 Overview  Precast concrete/insulated wall panels  Far‐field detonations  Design  Methods to improve response  Small panel tests  Large Panel tests  Close‐in detonations  Design  Numerical models  Methods to improve response  Ballistic demands  Design  Methods to improve response 13
  • 14. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 14 Small Panel Tests 14 Concentrated Force Concentrated Force Test Setup Schematic Actual Test Setup Photo
  • 15. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 15 Test Matrix 15
  • 16. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 16 Conventional Panel 16 4' 3" 1' 3" 3" #3 @ 9" Transverse Reinforcement 9" LOAD 2' ELEVATION PLAN 4'-6" 21 2"
  • 17. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 17 Dogbone Panel 17
  • 18. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 18 Dogbone Properties 18 0 100 200 300 400 500 600 0 0.1 0.2 0.3 SteelStress[MPa] Steel Strain Experiment Model Dogbone Material Model
  • 19. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 19 Dogbone Panel Analytical Model 19 2 sin , 2 , / / , / / , / / , / / 2 ∗ 4
  • 20. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 20 Dogbone Panel Performance 20 0 2 4 6 8 10 12 14 16 18 20 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 5 10 Force[kN] Load[lbf] Rotation [deg] Experiment Model
  • 21. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 21 Unbonded Panel 21 Teflon Tubing 0 100 200 300 400 500 600 700 800 0 0.05 0.1 0.15 0.2 SteelStress[MPa] Steel Strain Experiment Model Rebar Material Model
  • 22. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 22 Unbonded Panel Numerical Models 22 Abaqus Model 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0 0.2 0.4 0.6 0.8 1 RebarStrain Point Along Normalized Panel Length Bonded 20db 40db 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0 0.2 0.4 0.6 0.8 1 ConcreteStrain Point Along Normalized Panel Length Bonded 20db 40db At 19.1 mm deflection
  • 23. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 23 Locally Unbonding Reinforcement 23 0 2 4 6 8 10 12 14 16 0 5 10 15 20 Resistance [psi] Support Rotation [deg] UFC Unbond Average Bar Fracture Near Elastic‐Perfectly Plastic Behavior
  • 24. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 24 Unbonded Panel Analytical Model 24 compression truss tension truss: rebar, concrete rigid link elastic beam imposed displacements unbonded region k h 0 5 10 15 20 0 2 4 6 8 10 12 14 16 18 20 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 5 10 15 20 Support Rotation [deg] Pressure[kPa] Pressure[psi] Support Rotation [deg] Experimental a1 b2 b1 a2 compression truss tension truss: rebar, concrete rigid link elastic beam imposed displacements unbonded region k h pinned link
  • 25. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 25 Unbonded Panel Performance 25 0 2 4 6 8 10 12 14 16 18 20 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 10 20 30 Force[kN] Force[lbf] Support Rotation [deg] Analytical Experimental 60db 20db 60db 20db Model does not account for bending stresses  leading to larger error as the deflections increase Kconc α Krebar Δuu L1 L Ld d KINEMATICS B rigid beams not in scale
  • 26. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 26 Overview  Precast concrete/insulated wall panels  Far‐field detonations  Design  Methods to improve response  Small panel tests  Large Panel tests  Close‐in detonations  Design  Numerical models  Methods to improve response  Ballistic demands  Design  Methods to improve response 26
  • 27. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 27 Large Panel Tests Motivation:  Scalability of unbonding mechanism  Influence of shear ties on insulated panel  response 27 Test Setup Load Cell Hex Nuts Flate Plate Above and Below Load Cell for Bearing 6" XX Hvy. Pipe Hex Nuts - Double Nutted Frame for Instrumentation 1"Ø B7 Rod
  • 28. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 28 Large Panel Test Matrix 28 http://r2.cygnuspub.com/files/cygnus/image/FCP/20 12/FEB/495x330/xconnector_10626623.jpg Thermomass – X‐Series Thermomass – Composite TieNu‐Tie Altus Group – C‐Grid
  • 29. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 29 Overview  Precast concrete/insulated wall panels  Far‐field detonations  Design  Methods to improve response  Small panel tests  Large Panel tests  Close‐in detonations  Design  Numerical models  Methods to improve response  Ballistic demands  Design  Methods to improve response 29
  • 30. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 30 Close‐in Detonation 30 - - f'r <0 No Spall Spall Breach - - f'r >0 Experiment Front Face Rear Face Spall Example Primary  Mechanisms: • Spall • Breach
  • 31. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 31 Close‐in Detonation Design 31 h R = 1 a+bψ2.5+cψ0.5 h R = 1 a+bψ+cψ2 Spall threshold Breach threshold D R L h Typical cylindrical cased charge, W Equivalent hemispherical surface charge, Wadj Concrete wall
  • 32. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 32 Overview  Precast concrete/insulated wall panels  Far‐field detonations  Design  Methods to improve response  Small panel tests  Large Panel tests  Close‐in detonations  Design  Numerical models  Methods to improve response  Ballistic demands  Design  Methods to improve response 32
  • 33. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 33 Close‐in Detonation Numerical Model 33 •Enhanced performance of  insulated panel to spall/breach  due primarily to gap between  exterior and interior wythes •Validation of models with  experiments underway
  • 34. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 34 Overview  Precast concrete/insulated wall panels  Far‐field detonations  Design  Methods to improve response  Small panel tests  Large Panel tests  Close‐in detonations  Design  Numerical models  Methods to improve response  Ballistic demands  Design  Methods to improve response 34
  • 35. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 35 Improving Spall/Breach Response  Interior hardening methods  Increase insulation thickness 35 Steel plate, kevlar lining,  composite laminates, etc. •Currently exploring numerically  and experimentally
  • 36. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 36 Overview  Precast concrete/insulated wall panels  Far‐field detonations  Design  Methods to improve response  Small panel tests  Large Panel tests  Close‐in detonations  Design  Numerical models  Methods to improve response  Ballistic demands  Design  Methods to improve response 36
  • 37. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 37 Ballistic Design 37 Primary  Mechanisms: • Spall • Perforation Approach for ballistic aspect will be  applying empirical formulas for  reinforced concrete in series - - f'r <0 No Spall Spall Perforation - - f'r >0 vs vr Treat insulation as air gap v v =v s s r
  • 38. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 38 Ballistic Design 38 Spall Thickness Tsp= 1.215 Xf d0.1 + 2.12d Perforation Thickness Tpf= 1.13 Xf d0.1 + 1.311d Xf = depth of penetration corrected for  concrete strength and fragment material Residual Velocity vr =vs [1‐(Tc/Tpf)2]0.555  for Xf <2d vr =vs [1‐(Tc/Tpf)]0.555  for Xf >2d UFC 3‐340‐02
  • 39. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 39 Overview  Precast concrete/insulated wall panels  Far‐field detonations  Design  Methods to improve response  Small panel tests  Large Panel tests  Close‐in detonations  Design  Numerical models  Methods to improve response  Ballistic demands  Design  Methods to improve response 39
  • 40. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 40 Ballistic Response Improvement  Similar methods as spall/breach panels  Utilize various ballistic resistant materials such as  UHPC 40 Steel plate, kevlar lining,  composite laminates, etc. Ultra‐high performance  concrete
  • 41. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 41 Conclusion  Improving response to far‐field detonations  41
  • 42. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 42 Conclusion  Improving response to spall/breach and ballistic  threats 42 Steel plate, kevlar lining,  composite laminates, etc. Ultra‐high performance  concrete Increased insulation  thickness
  • 43. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 43 Questions? 43 Patrick Trasborg, EIT pat310@lehigh.edu Clay Naito, Ph.D., P.E. cjn3@lehigh.edu 2013 Sapienza Università di Roma  This material is based upon work supported by the National Science  Foundation under Grant No. CMMI‐1030812.  Any opinions, findings, and  conclusions or recommendations expressed in this material are those of  the authors and do not necessarily reflect the views of the National  Science Foundation.
  • 44. Sapienza Universita di Roma 6/27/2013 Trasborg/Naito (cjn3@lehigh.edu) 44 References  PCI Committee on Precast Sandwich Wall Panels, “State‐of‐the‐ Art of Precast/Prestressed Sandwich Wall Panels”, PCI Journal:  Vol 2, No 2, March 1997  PCI Blast Resistance and Structural Integrity Committee, “Blast‐ Resistant Design of Precast/Prestressed Concrete Components”,  PCI Report, July 2010  Department of Defense, “Structures to Resist the Effects of  Accidental Explosions”, UFC 3‐340‐02, 2008, p. 1106  U.S. Army Corps of Engineers, “Single Degree of Freedom  Structural Response Limits for Antiterrorism Design”, Protective  Design Center Technical Report PDC‐TR 06‐08 – Rev 1, 2008  Air Force Research Laboratory, “Analytical Assessment of the  Blast Resistance of Precast, Prestressed Concrete Components”,  AFRL‐ML‐TY‐TP‐2007‐4529 Interim Report, April 2007 44
  • 45. Str o N GER www.stronger2012.com