Sapienza naito-25-06-13
Upcoming SlideShare
Loading in...5
×
 

Sapienza naito-25-06-13

on

  • 289 views

Water-Driven Debris Impact Forces on Structures: Experimental and Theoretical Program. ...

Water-Driven Debris Impact Forces on Structures: Experimental and Theoretical Program.

Water-driven debris generated during tsunamis and hurricanes can impose substantial impact forces on structures that are often not designed for such loads. This presentation covers the design and results of an experimental and theoretical program to quantify these potential impact forces. Two types of prototypical debris are considered: a wood log and a shipping container.
Full-scale impact tests at Lehigh University were carried out with a wooden utility pole and a shipping container. The tests were carried out in-air, and were designed to provide baseline, full-scale results. A 1:5 scale shipping container model was used for in-water tests in the Oregon State University large wave flume. These tests were used to quantify the effect of the fluid on the impact forces.
Results from both experimental programs are presented and compared with theoretical predictions. The analytical predictions are found to be in sufficient agreement such that they can be used for design. A fundamental takeaway is that the impact forces are dominated by the structural impact, with a secondary affect provided by the fluid.

Statistics

Views

Total Views
289
Views on SlideShare
289
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Sapienza naito-25-06-13 Sapienza naito-25-06-13 Presentation Transcript

  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 1 Water-Driven Debris Impact Forces on Structures: Experimental and Theoretical Program Water-Driven Debris Impact Forces on Structures: Experimental and Theoretical Program Clay Naito, Ph.D., P.E. Associate Professor of Structural Engineering Associate Chair of Civil and Environmental Engineering Lehigh University Bethlehem, Pennsylvania USA Research Seminar June 25, 2013 Sapienza Università di Roma
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 2 Presentation Summary  Lehigh University  Research Interests – Prof. Naito  Overview of Collaborative Blast Study  Overview of Tsunami Demands  Research Effort on Impact Demands 2
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 3 Lehigh University  Established in 1865.  Located in Bethlehem, PA  4700 Undergraduate Students  2200 Graduate Students  482 Full Tenure Track Faculty 3
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 4 Department of Civil and Environmental Engineering  Ranked 17th in the US (US News and World Report)  Department Organization  Chair Prof. Panos Diplas  Associate Chair Prof. Clay Naito  Areas of Expertise  Structural Engineering (11 Faculty)  Hydraulic Engineering (4 Faculty)  Environmental Engineering (4 Faculty)  Geotechnical Engineering (2 Faculty) 4
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 5 CEE: Structural Engineering 5 John Wilson, Ph.D. Professor Dir. of Graduate Studies Mechanics Paolo Bocchini, Ph.D. Assistant Professor Computational Mechanics and Reliability • Ten Tenure Track Faculty • 3 Assistant, 2 Associate, 5 Full Professors • One Professor of Practice – Master of Eng. Program Jennifer Gross, P.E. Professor of Practice Structural Engineering Stephen Pessiki, Ph.D. Professor Fire and Earthquake Engineering and NDE Methods Dan Frangopol, Sc.D. Professor Safety and Reliability Shamim Pakzad, Ph.D. Assistant Professor Structural Health Monitoring and Sensor Networks Clay Naito Ph.D., P.E. Associate Professor Blast, Impact, and Concrete Systems James Ricles, Ph.D., P.E. Professor NEES Director Seismic Response and Retrofit of Steel Structures Richard Sause, Ph.D., P.E. Professor ATLSS Director Seismic and Blast Response of Structures Peter Mueller, Sc.D. Associate Professor Concrete Mechanics
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 6 Degree Programs  Bachelor of Science  Civil Engineering (50 students / yr)  Environmental Engineering (15)  Graduate Degrees  M.S. (13) & Ph.D. (13) Civil Engineering  Master of Science (19) Structural Eng.  Ph.D. Structural Engineering (38)  Master of Engineering Structural Eng.  Current enrollment 23  1 year program (June – May)
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 7 Research Facilities 7 Fritz Laboratory ATLSS Research Center
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 8 Research Facilities 8 Fritz Laboratory • 5000 kip (22MN) Universal Testing Machine • Fatigue Testing Bed • > 100 years of experimental research ATLSS Research Center • Large scale strong floor and wall. • High speed actuators and DAQ • Allows for full scale component and structure testing.
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 9 Research Facilities 9 ATLSS Research Center Advanced Technology for Large Structural Systems Sause – Tubular Flange Girder Ricles – Buckling Restrained Brace Verrazano Narrows Bridge Deck Replacement - Roy
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 10 Throgs Neck Bridge, New York City Load Testing/Weigh-in-Motion Infrastructure Deterioration & Simulation, Measurement, and Evaluation
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 11 Department Research Thrusts 11 Infrastructure Reliability, Maintenance, and Life- Cycle Management Infrastructure Deterioration Infrastructure Hazard Mitigation Intelligent Infrastructure Simulation, Measurement, and Evaluation Advanced Structural Materials and Systems
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 12 Research Areas  Hazard Mitigation  Seismic Mitigation  Development of a Seismic Design Methodology for Precast Concrete Diaphragms  Anti-Terrorism and Force Protection  Blast Pressure Demands  Ballistic Fragments – Structures / Personnel  Close-in Detonation of High Explosives  Progressive Collapse Design  Impact Demands from Accidental Impacts  Debris Loading from Tsunami Events  Infrastructure Deterioration  Evaluation and Assessment of Pretensioned Concrete Box Beams  Use of New Materials – SCC and UHPC  Implementation of NDE techniques into new construction 12
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 13 Infrastructure Deterioration  Ultimate Strength of Self Consolidating Concrete Bulb Tee Beams  Pennsylvania DOT - Inspection Methods & Techniques to Determine Non Visible Corrosion of Prestressing Strands in Concrete Bridge Components  Federal Highway Administration - Designing and Detailing Post Tensioned Bridges to Accommodate Non-Destructive Evaluation
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 14 Development of Blast Resistant Structures (Trasborg / Olmati) Research Efforts:  Assessment of Precast Concrete Cladding  Development of Enhanced Components Full-Scale Blast Evaluation Laboratory Static Evaluation Breach Resistance to Close-in Charges Wall Cladding Systems Numerical Modeling
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 15 Collaborative Evaluation Effort 15 National Science Foundation (NSF) funded a study by University of Missouri Kansas City (UMKC) to perform a batch of blast resistance tests on reinforced concrete slabs. The Blast Blind Simulation Contest is sponsored in collaboration with American Concrete Institute (ACI) Committees 447 (Finite Element of Reinforced Concrete Structures) and 370 (Blast and Impact Load Effects), and UMKC School of Computing and Engineering.
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 16 Prediction Goal Given: • Material Properties • Blast Demands • Test Configuration Determine: • Displacement time history, maximum and time of occurrence • Numerical – Crack pattern Four Categories: • Normal Strength – Analytical Prediction (SDOF) • Normal Strength – Numerical Prediction (LS-Dyna) • High Strength – Analytical Prediction (SDOF) • High Strength – Numerical Prediction (LS-Dyna) Research Team Institutions: Sapienza Università di Roma (SUR), Lehigh University (LU), and Politecnico di Milano (PM). Research Team Members: Pierluigi Olmati (SUR), Patrick Trasborg (LU), Dr. Luca Sgambi (PM), Prof. Franco Bontempi (SUR), and Prof. Clay Naito (LU).
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 17 Shock Tube 17
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 18 Video of Test 18
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 19 Input Data 19 Normal Slab 37 MPa of concrete strength GR60 reinforcing steel Hardened Slab 80 MPa of concrete strength Vanadium reinforcing steel 0 10 20 30 40 50 60 0 20 40 60 80 100 Pressure[psi] Time [msec] PH-Set 2a PH-Set 2b Load 1 Load 2 LOAD
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 20 Slab Details 20 - 20 March 2013 -
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 21 Numerical Modeling 21 Number of nodes: 290628 Number of solid elements: 270960 Number of beam elements: 130 Reinforcements LS-DYNA
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 22 Crack Pattern Normal Slab 37 MPa of concrete strength / Gr.420 reinforcing steel LOAD2 LOAD1
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 23 Response Estimate 23 Normal Slab 37 MPa of concrete strength / GR60 reinforcing steel 0 1 2 3 4 5 0 0.05 0.1 0.15 δ[inch] Time [sec] Load 1 Load 2
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 24 Hardened Slab – Crack Pattern 24 80 MPa of concrete strength Vanadium reinforcing steel LOAD2 LOAD1
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 25 Response of Hardened Slab 25 Hardened Slab 80 MPa of concrete strength Vanadium reinforcing steel Slabs
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 26 Results 26 Normal Slab 37 MPa of concrete strength GR60 reinforcing steel Hardened Slab 80 MPa of concrete strength Vanadium reinforcing steel 0 1 2 3 4 5 0 0.05 0.1 0.15 δ[inch] Time [sec] Load 1 Load 2
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 27 Results of Competition 27 Four Categories: • Normal Strength – Numerical Prediction (LS-Dyna) – 1st place • Normal Strength – Analytical Prediction (SDOF) – 2nd place • High Strength – Analytical Prediction (SDOF) – 3rd place (unofficial) • High Strength – Numerical Prediction (LS-Dyna) – Not released Upcoming Presentation – ACI Fall Meeting – Tucson Arizona ACI special publication Research Team Institutions: Sapienza Università di Roma (SUR), Lehigh University (LU), and Politecnico di Milano (PM). Research Team Members: Pierluigi Olmati (SUR), Patrick Trasborg (LU), Dr. Luca Sgambi (PM), Prof. Franco Bontempi (SUR), and Prof. Clay Naito (LU).
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 28 Impact from Tsunami Generated Debris Research Goals:  Determine typical debris of concern  Identify typical spread patterns  Determine forces generated during impact
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 29 Water-Driven Debris Impact Forces on Structures: Experimental and Theoretical Program Water-Driven Debris Impact Forces on Structures: Experimental and Theoretical Program Clay Naito, Ph.D., P.E. Associate Professor of Structural Engineering Associate Chair of Civil and Environmental Engineering Lehigh University Bethlehem, Pennsylvania USA Team: Ron Riggs (U.Hawaii) & Dan Cox (Oregon State U.) Research Seminar June 25, 2013 Sapienza Università di Roma
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 30 Tsunami Demands Inundation Rapid ~ 30 minutes after event • Japan • US Northwest and Alaska
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 31 NSF Rapid: Impact of Debris Generated from the Tohoku Tsunami Field Team: 1.Clay Naito (Lehigh U.) 2.Dan Cox (OSU) 3.Kent Yu (Degenkolb) 4.Daiki Tsujio (Pacific) 5.Prof. Mizutani (Nagoya) Travel Itinerary: 1.Natori 2.Minamisanriku, Kesennuma, Rikuzentakta 3.Sendai 4.Onagawa, Ishinomaki 5.Sendai, Natori 2011 Japan Reconnaissance Overview
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 32 NSF Rapid: Impact of Debris Generated from the Tohoku Tsunami Debris and Structural Damage • Debris Considerations Observed – Natural and Manufactured Wood – Vehicle Debris – Shipping Containers – Boats/Ships – Fuel Storage Containers • Structural System Types – Reinforced Concrete Buildings – Steel Buildings – Wood Frame – Utility Distribution
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 33 NSF Rapid: Impact of Debris Generated from the Tohoku Tsunami Wood Debris Photo: Y. Okuda BRI Japan Photo: Y. Okuda BRI Japan Natural Debris Inundation Natural Debris Rundown Wood Frame Structure Debris Debris Field
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 34 NSF Rapid: Impact of Debris Generated from the Tohoku Tsunami Vehicle Debris Floating Debris Debris Field Entry into buildings Damming of Vehicles Debris Settlement
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 35 NSF Rapid: Impact of Debris Generated from the Tohoku Tsunami Boat/Ship Debris Debris Settlement Contribution to Tsunami Forces Vessel Size Natori Kessenuma Impact Forces Minamisanriku Ishinomaki Kessenuma
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 36 NSF Rapid: Impact of Debris Generated from the Tohoku Tsunami Shipping Container Debris Ofunato, Japan Sendai, Japan • Container Ports Common • Containers Float • Debris in port • Debris in region
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 37 NSF Rapid: Impact of Debris Generated from the Tohoku Tsunami Shipping Containers Building Impact Light Pole Impact Failure Modes Quantified
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 38 NSF Rapid: Impact of Debris Generated from the Tohoku Tsunami Other Debris Wood Debris Stairways Cladding
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 39 NSF Rapid: Impact of Debris Generated from the Tohoku Tsunami Fuel Storage Containers • Failure of Fuel Storage Containers • Loss of Anchorage • Impact damage to structures • Fuel containment failure and contamination to areas.
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 40 Impact Damage
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 41 Debris SiteAssessment Point-source debris Shipping container yards Ports with barges/ships Site assessment procedure Determine potential debris plan area Number of containers * area of a container Define debris concentration: area of debris/land area 2% concentration defines debris dispersion zone
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 42 Sendai (Containers)
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 43 Sendai (Containers)
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 44 Natori (Vessel Spread)
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 45 Goals of NEES Research Study Determine the debris impact forces from tsunami generated debris on structures Flexible debris Low velocity, ‘moderate’ mass Consider fluid effects and (container) contents Provide relatively simple design formulas Impact force and duration Tsunami Loading, Ftotal + 
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 46 Longitudinal Impact Tree, pole or container hitting a column head-on Column modeled as a massless spring, ks Transverse Impact Tree or pole hitting a column transversely Analytical Models–Wave Propagation L ks x v0 L1 ks L2 x v0 ω0
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 47 Longitudinal Impact Rigid impact force: Duration: Rigid limit works well Simplest formula Transverse Impact Rigid impact force Longitudinal impact force is usually larger Focus on longitudinal impact Impact Forces Fl  E Av0  kmv0 td  2L / c0  2mvo Fl 0 02 2t shF G Av k mv  
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 48 Utility pole 6 m long Tapered from 0.267 m to 0.216 m diameter 204 kg About ½ the weight of the ‘basic’ design log of ASCE 7-10 (Flood) Pendulum test setup Lehigh In-Air Tests Load cell down here (not shown)
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 49 6.1 m x 2.4 m x 2.6 m and 2300 kg empty Containers have 2 bottom rails and 2 top rails Pendulum setup; longitudinal rails strike load cell(s) ISO 20-ft Shipping Container
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 50 Shipping Container Impact
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 51 Impact velocity 1.3 m/s One bottom rail of container hit Impact Force Time History 0 50 100 150 200 250 300 0 5 10 15 20 25 30 Container Wood Pole ImpactForce(kN) Time (msec)
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 52 Impact Force Time Histories F ≈ 560 kN per m/s F ≈ 114 kN per m/s
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 53 Actual force divided by the analytical impact force 1.0 would mean perfect alignment Nondimensional Maximum Impact Force
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 54 Actual duration divided by the analytical duration Nondimensional Impact Duration
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 55 Large wave flume: 110 m long; 3.7 m wide; 4.6 m deep 1:5 scale container hits column at nearly the flow speed Multiple water depths and drafts were considered OSU In-Water Tests
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 56 Guide wires controlled the trajectory Container hits underwater load cell to measure the force Aluminum andAcrylic Containers Column and load cell at top of photo
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 57 In-air tests carried out with pendulum set-up for baseline In-water impact filmed by submersible camera Impact was on bottom plate to approximate longitudinal rail impact Impact In-air impact In-water impact
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 58 Insert video Impact
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 59 Side View
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 60 In-water impact and in-air impact very similar Less difference between in-air and in-water compared to scatter between different in-water trials Force Time-History
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 61 Each symbol style represents unique water depth and draft combination Solid black line is the predicted force based on in-air tests Maximum Impact Force vs. Speed
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 62 Conclusions Simple formula for design impact forces validated by experimental data Assumptions are conservative Container contents don’t affect impact force significantly, although duration can be increased Results indicate fluid doesn’t affect impact force substantially Other conservative assumptions compensate for slight conservatism in ignoring it Results are the basis for the proposed debris impact forces in ASCE 7
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 63 Acknowledgements This material is based upon work supported by the National Science Foundation under Grant No. CMMI- 1041666; REU students supported by Grant No. CMMI-1005054; Tohoku survey supported by Rapid Grant No. CMMI-1138668. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation REU students Amy Kordosky, Patrick Bassal, and Andrew Lopes helped with the OSU and LU tests. George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES)
  • Sapienza Universita di Roma 6/27/2013 Contact: Clay Naito (cjn3@lehigh.edu) 64 Thank you.
  • Str o N GER www.stronger2012.com