Your SlideShare is downloading. ×
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Approccio sistemico per la sicurezza delle gallerie in caso di incendio

107
views

Published on

6 febbraio 2014 -Si è svolta presso l’Università della Calabria di Arcavacata di Rende (Cs) la giornata di studio sulla “ Resistenza al fuoco delle strutture”, organizzata dalla Direzione Regionale …

6 febbraio 2014 -Si è svolta presso l’Università della Calabria di Arcavacata di Rende (Cs) la giornata di studio sulla “ Resistenza al fuoco delle strutture”, organizzata dalla Direzione Regionale dei Vigili del Fuoco e dall’Università della Calabria, con il Patrocinio dell’Ordine degli Ingegneri di Cosenza, e rivolta ai professionisti che operano nel settore dell’antincendio.

http://www.vigilfuococalabria.com/territorio/direzione/291-unical-giornata-di-studio-resistenza-al-fuoco-delle-strutture-2.html

Published in: Design, Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
107
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Approccio sistemico per la sicurezza delle gallerie in caso di incendio e problemi strutturali specifici Prof. Dr. Ing. Franco Bontempi Ordinario di Tecnica delle Costruzioni Facolta’ di Ingegneria Civile e Industriale Universita’ degli Studi di Roma La Sapienza www.francobontempi.org Str o N GER 1
  • 2. www.francobontempi.org Str o N GER 2
  • 3. Scopo della presentazione • Far vedere gli aspetti piu’ generali della progettazione strutturale antincendio: Complessita’ del problema; Approccio sistemico; Natura accidentale dell’azione incendio; Progettazione prestazionale/prescrittiva; Aspetti specifici delle gallerie stradali. www.francobontempi.org Str o N GER 3
  • 4. www.francobontempi.org Str o N GER 1 OGGETTO Caratteristiche delle gallerie Geometrie Impianti 4
  • 5. www.francobontempi.org Str o N GER GEOMETRIE 5
  • 6. www.francobontempi.org Str o N GER Tipo A - autostrade 6
  • 7. www.francobontempi.org Str o N GER 7
  • 8. www.francobontempi.org Str o N GER Tipo B – extraurbane principali 8
  • 9. Str o N GER www.francobontempi.org Tipo C – extraurbane secondarie 9
  • 10. www.francobontempi.org Str o N GER 10
  • 11. www.francobontempi.org Str o N GER 11
  • 12. www.francobontempi.org Str o N GER 12
  • 13. www.francobontempi.org Str o N GER 13
  • 14. www.francobontempi.org Str o N GER 14
  • 15. www.francobontempi.org Str o N GER 15
  • 16. www.francobontempi.org Str o N GER 16
  • 17. www.francobontempi.org Str o N GER 17
  • 18. www.francobontempi.org Str o N GER Sistema vs Struttura Opera Viva Opera Morta 18
  • 19. www.francobontempi.org Str o N GER IMPIANTI VENTILAZIONE 19
  • 20. www.francobontempi.org Str o N GER 20
  • 21. www.francobontempi.org Str o N GER Piston effect • Is the result of natural induced draft caused by free-flowing traffic (> 50 km/h) in uni-directional tunnel thus providing natural ventilation. 21
  • 22. www.francobontempi.org Str o N GER Mechanical ventilation • “forced” ventilation is required where piston effect is not sufficient such as in – congested traffic situations; – bi-directional tunnels (piston effect is neutralized by flow of traffic in two opposite directions); – long tunnels with high traffic volumes. 22
  • 23. Str o N GER www.francobontempi.org TUNNEL VENTILATION SYSTEMS • Road Tunnel Ventilation Systems have two modes of operation: • Normal ventilation, for control of air quality inside tunnels due to vehicle exhaust emissions: – in any possible traffic situation, tunnel users and staff must not suffer any damage to their health regardless the duration of their stay in the tunnel; – the necessary visual range must be maintained to allow for safe stopping. • Emergency ventilation in case of fire, for smoke control: – the escape routes must be kept free from smoke to allow for selfrescue; – the activities of emergency services must be supported by providing the best possible conditions over a sufficient time period ; – the extent of damage and injuries (to people, vehicles and the tunnel structure itself) must be kept to a minimum. 23
  • 24. www.francobontempi.org Str o N GER Longitudinal ventilation system • employs jet fans suspended under tunnel roof; in normal operation fresh air is introduced via tunnel entering portal and polluted air is discharged from tunnel leaving portal. 24
  • 25. www.francobontempi.org Str o N GER 25
  • 26. www.francobontempi.org Str o N GER 26
  • 27. Str o N GER www.francobontempi.org Semi-transverse ventilation system • employs ceiling plenum connected to central fan room equipped with axial fans; in normal operation fresh air is introduced along the tunnel trough openings in the ventilation plenum while polluted air is discharged via tunnel portals. 27
  • 28. www.francobontempi.org Str o N GER Transverse ventilation system • employs double supply and exhaust plenums connected to central fan rooms equipped with axial fans; in normal operation fresh air is introduced and exhausted via openings in double ventilation plenums. 28
  • 29. www.francobontempi.org Str o N GER 29
  • 30. www.francobontempi.org Str o N GER 30
  • 31. www.francobontempi.org Str o N GER 31
  • 32. www.francobontempi.org Str o N GER Attachments • Dispersion stack and fan room combined with longitudinal ventilation: may be required in order to reduce adverse effect on environment of discharge of polluted air from tunnel, where buildings are located in proximity (< 100m) to tunnel leaving portal. 32
  • 33. www.francobontempi.org Str o N GER 33
  • 34. www.francobontempi.org Str o N GER Ventilation unit Air extraction Ventilation unit Supply of fresh air 34
  • 35. www.francobontempi.org Str o N GER 35
  • 36. www.francobontempi.org Str o N GER 2 COMPLESSITA’ Approccio prestazionale Modellazione Sicurezza 36
  • 37. System Complexity (Perrow) couplings TIGHT LINEAR interactions NONLINEAR LOOSE www.francobontempi.org Str o N GER 37
  • 38. www.francobontempi.org Str o N GER APPROCCIO PRESTAZIONALE 38
  • 39. www.francobontempi.org Str o N GER 39
  • 40. www.francobontempi.org Str o N GER Prescrittivo (1) APPROCCIO PRESCRITTIVO APPROCCIO PRESTAZIONALE 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 INSIEME DI STRUMENTI LOGICI E MATERIALI #3 GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI 40
  • 41. Str o N GER www.francobontempi.org Prescrittivo (2) prescrittivo Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Requisiti Requisiti prestazionale Requisiti Requisiti Elementi Costituenti Elementi Costituenti 41
  • 42. www.francobontempi.org Str o N GER Prestazionale (1) APPROCCIO PRESCRITTIVO APPROCCIO PRESTAZIONALE 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 INSIEME DI STRUMENTI LOGICI E MATERIALI #3 GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI 42
  • 43. Str o N GER www.francobontempi.org Prestazionale (2) prescrittivo Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Requisiti Requisiti prestazionale Requisiti Requisiti Elementi Costituenti Elementi Costituenti 43
  • 44. www.francobontempi.org Str o N GER START DEFINIZIONE E DISANIMA DEGLI OBIETTIVI INDIVIDUAZIONE DELLE SOLUZIONI ATTE A RAGGIUNGERE GLI OBIETTIVI ATTIVITA' DI MODELLAZIONE E MISURA GIUDIZIO DELLE PRESTAZIONI RISULTANTI No Yes END 44
  • 45. www.francobontempi.org Str o N GER 45
  • 46. www.francobontempi.org Str o N GER 46
  • 47. www.francobontempi.org Str o N GER livello 1 OBIETTIVI livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: C DEFINIZIONE DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima LIMITI DELLA PERFORMANCE i-esima B livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI RISPETTO DI PRESCRIZIONI MODELLI NUMERICI A NO ESITO MODELLI FISICI 47 SI'
  • 48. livello 1 OBIETTIVI livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: C DEFINIZIONE DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima LIMITI DELLA PERFORMANCE i-esima B livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI RISPETTO DI PRESCRIZIONI MODELLI NUMERICI A NO ESITO MODELLI FISICI SI' www.francobontempi.org Str o N GER 48
  • 49. www.francobontempi.org Str o N GER MODELLAZIONE 49
  • 50. www.francobontempi.org Str o N GER 50
  • 51. www.francobontempi.org Analysis Strategy #1: Sensitivity governance of priorities Str o N GER 51
  • 52. www.francobontempi.org Analysis Strategy #2: Bounding behavior governance Str o N GER 52
  • 53. www.francobontempi.org Analysis Strategy #3: Redundancy Governance Str o N GER 53
  • 54. www.francobontempi.org Str o N GER NUMERICAL MODELING 54
  • 55. www.francobontempi.org Factors for Coupling Str o N GER time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) INFORMATION FLOW DIRECTION 55
  • 56. time tK time tK time tK time tK TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) www.francobontempi.org Fully Coupled Scheme Str o N GER MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 56
  • 57. time tK time tK time tK time tK TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) www.francobontempi.org Staggered Coupled Scheme Str o N GER MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 57
  • 58. time tK time tK time tK time tK TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) www.francobontempi.org Temperature Driven Scheme Str o N GER MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 58
  • 59. time tK time tK time tK time tK TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) www.francobontempi.org Scheme With No Memory Str o N GER MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 59
  • 60. www.francobontempi.org Str o N GER 60
  • 61. www.francobontempi.org Str o N GER 61
  • 62. www.francobontempi.org Str o N GER 62
  • 63. www.francobontempi.org Str o N GER 63
  • 64. www.francobontempi.org Str o N GER SICUREZZA 64
  • 65. RELIABILITY A way to assess the dependability of a system ATTRIBUTES AVAILABILITY MAINTAINABILITY SAFETY the trustworthiness of a system which allows reliance to be justifiably placed on the service it delivers SECURITY INTEGRITY DEPENDABILITY of STRUCTURAL SYSTEMS www.francobontempi.org Str o N GER High level / active performance FAULT THREATS An understanding of the things that can affect the dependability of a system ERROR FAILURE Low level / passive performance it is a defect and represents a potential cause of error, active or dormant the system is in an incorrect state: it may or may not cause failure permanent interruption of a system ability to perform a required function under specified operating conditions FAULT TOLERANT DESIGN FAULT DETECTION MEANS FAULT DIAGNOSIS ways to increase the dependability of a system Visions, I., Laprie, J.C., Randell, B., Dependability and its threats: a taxonomy, 18th IFIP World Computer Congress, 65 FAULT MANAGING Toulouse (France) 2004.
  • 66. RELIABILITY www.francobontempi.org Structural Robustness (1) Str o N GER AVAILABILITY ATTRIBUTE S MAINTAINABILITY SAFETY SECURITY INTEGRITY FAULT THREATS ERROR FAILURE it is a defect and represents a potential cause of error, active or dormant the system is in an incorrect state: it may or may not cause failure permanent interruption of a system ability 66 66 to perform a required function under specified operating conditions
  • 67. • Capacity of a construction to show a regular decrease of its structural quality due to negative causes. It implies: a) some smoothness of the decrease of structural performance due to negative events (intensive feature); b) some limited spatial spread of the rupture (extensive feature). 67 www.francobontempi.org Structural Robustness (2) Str o N GER
  • 68. 1st level: Material Point 3rd level: Structural Element 4th level: Structural System 2nd level: Element Section Structural Robustness Assessment Usual ULS & SLS Verification Format www.francobontempi.org Levels of Structural Crisis Str o N GER 68
  • 69. STRUCTURE & LOADS Collapse Mechanism NO SWAY SWAY “IMPLOSION” OF THE STRUCTURE www.francobontempi.org Bad vs Good Collapses Str o N GER is a process in which objects are destroyed by collapsing on themselves “EXPLOSION” OF THE STRUCTURE is a process 69 NOT CONFINED
  • 70. www.francobontempi.org Str o N GER Design Strategy #1: Continuity 70
  • 71. www.francobontempi.org Str o N GER Design Strategy #2: Segmentation 71
  • 72. www.francobontempi.org Str o N GER Esempio di valutazione di roubustezza strutturale 72
  • 73. www.francobontempi.org Str o N GER Esempio: edificio alto 73 73
  • 74. www.francobontempi.org Str o N GER Analisi di un componente tipico D0 74
  • 75. Str o N GER www.francobontempi.org Scenari (1-2) D1 D2 75
  • 76. Str o N GER www.francobontempi.org Scenari (3-4) D3 D4 76
  • 77. www.francobontempi.org Str o N GER Modalità di collasso (1-2) D1 D2 77
  • 78. www.francobontempi.org Str o N GER Modalità di collasso (3-4) D3 D4 78
  • 79. Str o N GER www.francobontempi.org Sintesi dei risultati: elemento critico 0 4 Lo scenario D4 è quello più cattivo: l’elemento strutturale critico individuato è la colonna più esterna! 79
  • 80. www.francobontempi.org Modellazione edificio alto Str o N GER 80
  • 81. www.francobontempi.org Str o N GER 81
  • 82. www.francobontempi.org Str o N GER Scenari di danneggiamento Scenario 1 Scenario 2 Scenario 3 Scenario 4 (1 asta eliminata) (3 aste eliminate) (5 aste eliminate) (7 aste eliminate) 82
  • 83. www.francobontempi.org Str o N GER Collasso secondo scenario 1 83
  • 84. www.francobontempi.org Str o N GER Collasso secondo scenario 2 84
  • 85. www.francobontempi.org Str o N GER Collasso secondo scenario 3 85
  • 86. www.francobontempi.org Str o N GER Collasso secondo scenario 4 86
  • 87. www.francobontempi.org Str o N GER Sintesi dei risultati Moltiplicatore Ultimo e sua variazione u 4,50 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,50 0,00 Delta u Δ F Fu 0,48 4,05 D0 3,57 D1 0,86 3,19 1,41 1,65 2,64 2,40 D3 D4 D2 Scenario di danneggiamento 87
  • 88. www.francobontempi.org Str o N GER 3 AZIONE Natura dell’azione incendio Carattere accidentale Carattere estensivo Carattere intensivo 88
  • 89. www.francobontempi.org Str o N GER Aspetti caratteristici dell’incendio • Carattere estensivo (diffusione nello spazio): 1.wildfire 2.urbanfire 3.all’esterno di una costruzione 4.all’interno di una costruzione • Carattere intensivo (andamento nel tempo). • Natura accidentale. 89
  • 90. www.francobontempi.org Str o N GER Carattere intensivo 90
  • 91. ISO 13387: Example of Design Fire www.francobontempi.org Str o N GER 91
  • 92. Str o N GER www.francobontempi.org Andamento nel tempo potenza termica 92
  • 93. www.francobontempi.org Str o N GER 93
  • 94. Strategie flashover Temperatura T(t) www.francobontempi.org Str o N GER STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) andamento di T(t) a seguito del successo delle strategie attive 94 Tempo t
  • 95. www.francobontempi.org Str o N GER Fire Safety Strategies prevention protection active     Limit ignition sources Limit hazardous human behavior Emergency procedure and evacuation   Detection measures (smoke, heat, flame detectors) Suppression measures (sprinklers, fire extinguisher, standpipes, firemen) Smoke and heat evacuation system systemic F L A S H O V E R robustness passive    Create fire compartments Prevent damage in the elements Prevent loss of functionality in the building  Prevent the propagation of collapse, once local damages occurred (e.g. redundancy) structural 95
  • 96. Str o N GER 1 prevention N 2 3 www.francobontempi.org Fire Safety Strategies 4 doesn’t trigger Y Y extinguishes active protection triggers Y N no failures passive protection spreads N Y damages no collapse robustness N collapse 96
  • 97. www.francobontempi.org Str o N GER 97
  • 98. www.francobontempi.org Str o N GER 98
  • 99. www.francobontempi.org Str o N GER SnakeFighter 99
  • 100. www.francobontempi.org Str o N GER Carattere estensivo 100
  • 101. www.francobontempi.org Str o N GER The Great Fire of Chicago, Oct. 7-10, 1871 101
  • 102. www.francobontempi.org Str o N GER 102
  • 103. www.francobontempi.org Str o N GER 103
  • 104. www.francobontempi.org Str o N GER 104
  • 105. www.francobontempi.org Str o N GER 105
  • 106. www.francobontempi.org Str o N GER Windsor Hotel Madrid 106
  • 107. www.francobontempi.org Str o N GER Natura accidentale 107
  • 108. www.francobontempi.org Situazioni HPLC Str o N GER High Probability Low Consequences 108
  • 109. www.francobontempi.org Str o N GER LPHC events Low Probability High Consequences 109
  • 110. HPLC vs LPHC events HPLC LPHC High Probability Low Probability Low High Consequences Consequences release of energy numbers of breakdown people involved nonlinearity interactions uncertainty decomposability course predictability SMALL SMALL FEW WEAK WEAK WEAK LARGE LARGE MANY STRONG STRONG STRONG HIGH HIGH LOW LOW 110
  • 111. www.francobontempi.org Str o N GER Impostazione del problema: DETERMINISTICA STOCASTICA Approcci di analisi HPLC LPHC Eventi Frequenti con Conseguenze Limitate Eventi Rari con Conseguenze Elevate ANALISI PRAGMATICA CON SCENARI ANALISI QUALITATIVA DETERMINISTICA ANALISI QUANTITATIVA PROBABILISTICA Complessità: Aspetti non lineari e Meccanismi di interazioni 111
  • 112. www.francobontempi.org Str o N GER Italian Code for Constructions D.M. 14 settembre 2005 CAPITOLO 2: SICUREZZA E PRESTAZONI ATTESE DOMANDA PRODOTTO CAPITOLO 5: NORME SULLE COSTRUZIONI CAPITOLO 3: AZIONI AMBIENTALI QUALITA’ CAPITOLO 4: AZIONI ACCIDENTALI CAPITOLO 6: AZIONI ANTROPICHE CAPITOLO 7: NORME PER LE OPERE INTERAGENTI CON I TERRENI E CON LE ROCCE, PER GLI INTERVENTI NEI TERRENI E PER LA SICUREZZA DEI PENDII CAPITOLO 9: NORME SULLE COSTRUZIONI ESISTENTI CONTROLLO CAPITOLO 11: MATERIALI E PRODOTTI PER USO STRUTTURALE CAPITOLO 8: COLLAUDO STATICO CAPITOLO 10: NORME PER LA REDAZIONI DEI PROGETTI ESECUTIVI 112
  • 113. www.francobontempi.org Str o N GER Scenari (D.M. 14 settembre 2005) Il Progettista, a seguito della classificazione e della caratterizzazione delle azioni, deve individuare le possibili situazioni contingenti in cui le azioni possono cimentare l’opera stessa. A tal fine, è definito:  lo scenario: un insieme organizzato e realistico di situazioni in cui l’opera potrà trovarsi durante la vita utile di progetto;  lo scenario di carico: un insieme organizzato e realistico di azioni che cimentano la struttura;  lo scenario di contingenza: l’identificazione di uno stato plausibile e coerente per l’opera, in cui un insieme di azioni (scenario di carico) è applicato su una configurazione strutturale. Per ciascuno stato limite considerato devono essere individuati scenari di carico (ovvero insiemi organizzati e coerenti nello spazio e nel tempo di azioni) che rappresentino le combinazioni delle azioni realisticamente possibili e verosimilmente più restrittive. 113
  • 114. Str o N GER Establish performance requirements www.francobontempi.org Determine geometry, construction and use of the building Establish maximum likely fuel loads Buchanan, 2002 Estimate maximum likely number of occupants and their locations Assume certain fire protection features Carry out fire engineering analysis Modify fire protection features No Acceptable performance Yes Accept design 114
  • 115. www.francobontempi.org Str o N GER 115
  • 116. www.francobontempi.org Str o N GER 4 SVILUPPO Dinamica degli incendi in galleria Effetti della ventilazione 116
  • 117. www.francobontempi.org Str o N GER FIRE DYNAMICS IN TUNNELS 117
  • 118. Tunnel Fires vs Compartment Fires (0) 118
  • 119. www.francobontempi.org Str o N GER Tunnel Fires Progression (1) 119
  • 120. www.francobontempi.org Str o N GER 120
  • 121. www.francobontempi.org Str o N GER 121
  • 122. www.francobontempi.org Str o N GER Tunnel Fires Progression (2) 122
  • 123. www.francobontempi.org Str o N GER Effects of ventilation 123
  • 124. www.francobontempi.org Str o N GER Temperature development 124
  • 125. www.francobontempi.org Str o N GER Smoke development • A smoke layer may be created in tunnels at the early stages of a fire with essentially no longitudinal ventilation. However, the smoke layer will gradually descend further from the fire. • If the tunnel is very long, the smoke layer may descend to the tunnel surface at a specific distance from the fire depending on the fire size, tunnel type, and the perimeter and height of the tunnel cross section. • When the longitudinal ventilation is gradually increased, the stratified layer will gradually dissolve. • A backlayering of smoke is created on the upstream side of the fire. • Downstream from the fire there is a degree of stratification of the smoke that is governed by the heat losses to the surrounding walls and by the turbulent mixing between the buoyant smoke layers and the normally opposite moving cold layer. 125
  • 126. www.francobontempi.org Str o N GER Backlayering 126
  • 127. www.francobontempi.org Str o N GER 127
  • 128. www.francobontempi.org Str o N GER Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles 128
  • 129. www.francobontempi.org Str o N GER Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles 129
  • 130. www.francobontempi.org Str o N GER Maximum gas temperatures in the cross section of the tunnel during tests with road vehicles 130
  • 131. www.francobontempi.org Str o N GER EMERGENCY VENTILATION 131
  • 132. www.francobontempi.org Str o N GER Smoke stratification 132
  • 133. www.francobontempi.org Str o N GER Natural smoke venting • It can be sufficient in short, level tunnels where smoke stratification allows for escape in clear/tenable conditions. 133
  • 134. www.francobontempi.org Str o N GER Smoke filling long tunnel 134
  • 135. www.francobontempi.org Str o N GER Emergency ventilation with longitudinal system • It can be employed in unidirectional, medium length tunnels, with free flowing traffic conditions. Smoke is mechanically exhausted in direction of traffic circulation, clear tenable conditions for escape are obtained on upstream side of fire. 135
  • 136. www.francobontempi.org Str o N GER 136
  • 137. www.francobontempi.org Str o N GER 137
  • 138. www.francobontempi.org Str o N GER k size factor for HGV fire 138
  • 139. www.francobontempi.org Str o N GER k size factor for small pool fire 139
  • 140. www.francobontempi.org Str o N GER Emergency ventilation with semitransverse “point extraction” system • Smoke is mechanically exhausted from single ceiling opening (reverse mode) leaving clear tenable escape conditions on both sides of fire. 140
  • 141. www.francobontempi.org Str o N GER 141
  • 142. www.francobontempi.org Str o N GER Observation: goal • The purpose of controlling the spread of smoke is to keep people as long as possible in a smoke-free environment. • This means that the smoke stratification must be kept intact, leaving a more or less clear and breathable air underneath the smoke layer. • The stratified smoke is taken out of the tunnel through exhaust openings located in the ceiling or at the top of the sidewalls. 142
  • 143. www.francobontempi.org Str o N GER Observation: longitudinal velocity • With practically zero longitudinal air velocity, the smoke layer expands to both sides of the fire. The smoke spreads in a stratified way for up to 10 min. • After this initial phase, smoke begins to mix over the entire cross section, unless by this time the extraction is in full operation. • The longitudinal velocity of the tunnel air must be below 2 m/s in the vicinity of the fire incidence zone. With higher velocities, the vertical turbulence in the shear layer between smoke and fresh air quickly cools the upper layer and the smoke then mixes over the entire 143 cross section.
  • 144. www.francobontempi.org Str o N GER Observations: turbulence • With an air velocity of around 2 m/s, most of the smoke of a medium-size fire spreads to one side of the fire (limited backlayering) and starts mixing over the whole cross section at a distance of 400 to 600 m downstream of the fire site. This mixing over the cross section can also be prevented if the smoke extraction is activated early enough. • Vehicles standing in the longitudinal air flow increase strongly the vertical turbulence and encourage the vertical mixing of the smoke. 144
  • 145. www.francobontempi.org Str o N GER Observation: fresh air • In a transverse ventilation system, the fresh air jets entering the tunnel at the floor level induce a rotation of the longitudinal airflow, which tends to bring the smoke layer down to the road. • No fresh air is to be injected from the ceiling in a zone with smoke because this increases the amount of smoke and tends to suppress the stratification. 145
  • 146. www.francobontempi.org Str o N GER Observation: smoke extraction • In reversible semi-transverse ventilation with the duct at the ceiling, the fresh air is added through ceiling openings in normal ventilation operation. • If a fire occurs, as long as fresh air is supplied through ceiling openings, the smoke quantity increases by this amount and strong jets tend to bring the smoke down to the road surface. The conversion of the duct from supply to extraction must be done as quickly as possible. 146
  • 147. www.francobontempi.org Str o N GER Observation: traffic conditions • For a tunnel with one-way traffic, designed for queues (an urban area), the ventilation design must take into consideration that cars can likely stand to both sides of the fire because of the traffic. In urban areas it is usual to find stop-andgo traffic situations. • For a tunnel with two-way traffic, where the vehicles run in both directions, it must be taken into consideration that in the event of a fire vehicles will generally be trapped on both sides of the fire. 147
  • 148. www.francobontempi.org Strategies Str o N GER 148
  • 149. www.francobontempi.org Str o N GER Smoke extraction • Continuous extraction into a return air duct is needed to remove a stratified smoke layer out of the tunnel without disturbing the stratification. • The traditional way to extract smoke is to use small ceiling openings distributed at short intervals throughout the tunnel. • Another efficient way to remove smoke quickly out of the traffic space is to install large openings with remotely controlled dampers. They are normally in an open position where equal extraction is taking place over the whole tunnel length. 149
  • 150. Tunnel with a single-point extraction system The usual way to control the longitudinal velocity is to provide several independent ventilation sections. When a tunnel has several ventilation sections, a certain longitudinal velocity in the fire section can be maintained by a suitable operation of the individual air ducts. By reversing the fan operation in the exhaust air duct, this duct can be 150 used to supply air and vice versa. www.francobontempi.org Str o N GER
  • 151. www.francobontempi.org Str o N GER FIRE MODELING 151
  • 152. www.francobontempi.org Str o N GER 152
  • 153. www.francobontempi.org Str o N GER Levels 153
  • 154. www.francobontempi.org Str o N GER 1D 154
  • 155. www.francobontempi.org Str o N GER 1D 155
  • 156. www.francobontempi.org Str o N GER 2D (zone model) 156
  • 157. www.francobontempi.org Str o N GER 2D (zone model) 157
  • 158. www.francobontempi.org Str o N GER 158
  • 159. 3D (ventilation) www.francobontempi.org FDS Simulation Str o N GER 159
  • 160. 3D (fire) www.francobontempi.org FDS Simulation Str o N GER 160
  • 161. www.francobontempi.org Str o N GER 3D (traffic) 161
  • 162. www.francobontempi.org Str o N GER 162
  • 163. www.francobontempi.org Str o N GER Multiscale 163
  • 164. www.francobontempi.org Str o N GER Multiscale (ventilation) 164
  • 165. www.francobontempi.org Str o N GER Multiscale (fire) 165
  • 166. www.francobontempi.org Str o N GER Multiscale (structural) 166
  • 167. www.francobontempi.org Str o N GER Multiscale (structural) 167
  • 168. www.francobontempi.org Str o N GER 5 PROGETTO Basis Failure path Risk 168
  • 169. www.francobontempi.org Str o N GER BASIS 169
  • 170. www.francobontempi.org Str o N GER 3/22/2011 Design Process - ISO 13387 A. Design constraints and possibilities (blue), B. Action definition and development (red), C. Passive system and active response (yellow), D. Safety and performance (purple). 170
  • 171. DESIGN ACTION RESPONSE FSE SS0a PRESCRIBED DESIGN PARAMETERS SS0b ESTIMATED DESIGN PARAMETERS (1+2) ACTION DEFINITION AND DEVELOPMENT (3+4) SYSTEM PASSIVE AND ACTIVE RESPONSE SS5 life safety: occupant behavior, location and condition SS1 initiation and development of fire and fire efluent SS6 property loss SS2 movement of fire effluent SS7 business interruption SS3 structural response and fire spread beyond enclosure of origin SS8 contamination of environment SS4 detection, activitation and suppression SS9 destruction of heritage SAFETY & PERFORMANCE (0) DESIGN CONSTRAINTS AND POSSIBILITIES BUS OF INFORMATION www.francobontempi.org Str o N GER RESULTS 171
  • 172. www.francobontempi.org Str o N GER STRUCTURAL CONCEPTION Yes threats No STRUCTURAL TOPOLOGY & GEOMETRY passive structural characteristics Yes threats No STRUCTURAL MATERIAL & PARTS Yes STRUCTURAL SYSTEM CHARACTERISTICS threats No FIRE DETECTION & SUPPRESSION active structural characteristics Yes threats STRUCTURAL SYSTEM WEAKNESS No ORGANIZATION & FIREFIGHTERS Yes threats No alive structural characteristics MAINTENANCE & USE Yes threats No 172
  • 173. STRUCTURAL CONCEPTION STRUCTURAL CONCEPTION Yes threats No STRUCTURAL TOPOLOGY & GEOMETRY passive structural char acteristics www.francobontempi.org Str o N GER Yes threats No STRUCTURAL MATERIAL & PARTS Yes threats No Yes FIRE DETECTION & SUPPRESSION active structural char acteristics threats Yes threats No ORGANIZATION & FIREFIGHTERS Yes No threats No alive structural char acteristics MAINTENANCE & USE Yes STRUCTURAL TOPOLOGY & GEOMETRY threats No passive structural characteristics Yes threats No STRUCTURAL MATERIAL & PARTS Yes threats No 173
  • 174. No www.francobontempi.org FIRE DETECTION & SUPPRESSION Str o N GER STRUCTURAL CONCEPTION Yes threats No STRUCTURAL TOPOLOGY & GEOMETRY passive structural char acteristics Yes threats No STRUCTURAL MATERIAL & PARTS active structural characteristics Yes threats No Yes threats No FIRE DETECTION & SUPPRESSION active structural char acteristics Yes threats No ORGANIZATION & FIREFIGHTERS ORGANIZATION & FIREFIGHTERS Yes threats No alive structural char acteristics MAINTENANCE & USE Yes threats No Yes threats No alive structural characteristics MAINTENANCE & USE Yes threats No 3/22/2011 PROGETTAZIONE STRUTTURALE ANTINCENDIO 174 174
  • 175. www.francobontempi.org Str o N GER Fire fighting timeline 175
  • 176. www.francobontempi.org Str o N GER STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY STRUCTURAL MATERIAL & PARTS FIRE DETECTION & SUPPRESSION ORGANIZATION & FIREFIGHTERS MAINTENANCE & USE CRISIS 176
  • 177. IN -D EP TH DE FE NC E www.francobontempi.org Str o N GER FAILURE PATH 177
  • 178. www.francobontempi.org Str o N GER Controlled vs. Uncontrolled Events 178
  • 179. www.francobontempi.org Str o N GER Controlled vs. Uncontrolled Events 179
  • 180. Fire safety concepts tree (NFPA) 1 1 Strategie per la gestione dell'incendio 2 2 3 Gestione dell'evento Prevenzione 4 Gestione dell'incendio 3 15 Gestione delle persone e dei beni 16 Difesa sul posto 4 18 Disposibilità delle vie di fuga 5 6 7 8 9 17 Spostamento 5 Controllo della quantità di combustibile 10 Soppressione dell'incendio 11 Automatica 6 Controllo dei materiali presenti 13 Controllo dell'incendio attraverso il progetto 19 Far avvenire il deflusso Buchanan, 2002 www.francobontempi.org Str o N GER 12 Manuale 7 Controllo del movimento dell'incendio 8 Ventilazione 14 Resistenza e stabilità strutturale 9 Contenimento 180
  • 181. Fire safety concepts tree (NFPA) 1 1 Strategie per la gestione dell'incendio 2 2 3 Gestione dell'evento Prevenzione 4 Gestione dell'incendio 3 15 Gestione delle persone e dei beni 16 Difesa sul posto 4 18 Disposibilità delle vie di fuga 5 6 7 8 9 17 Spostamento 5 Controllo della quantità di combustibile 10 Soppressione dell'incendio 11 Automatica 6 Controllo dei materiali presenti 13 Controllo dell'incendio attraverso il progetto 19 Far avvenire il deflusso Buchanan, 2002 www.francobontempi.org Str o N GER 12 Manuale 7 Controllo del movimento dell'incendio 8 Ventilazione 14 Resistenza e stabilità strutturale 9 Contenimento 181
  • 182. www.francobontempi.org Str o N GER Basis of tunnel fire safety design • The first priority identified in the literature for fire design of all tunnels is to ensure: 1. Prevention of critical events that may endanger human life, the environment, and the tunnel structure and installations. 2. Self-rescue of people present in the tunnel at time of the fire. 3. Effective action by the rescue forces. 4. Protection of the environment. 5. Limitation of the material and structural damage. • Furthermore, part of the objective is to reduce the consequences and minimize the economic loss caused by fires. 182
  • 183. www.francobontempi.org Str o N GER 183
  • 184. www.francobontempi.org Str o N GER RISK CONCERN 184
  • 185. www.francobontempi.org Str o N GER Risk treatment START 100 % Option 1 : RISK AVOIDANCE 50 % No 50 % Yes Option 2 : RISK REDUCTION 20 % No 30 % Yes Option 3 : RISK TRANSFER No 25 % Yes 5% Option 4 : RISK ACCEPTANCE No STOP 185
  • 186. Str o N GER www.francobontempi.org Option 1 Risk avoidance, which usually means not proceeding to continue with the system; this is not always a feasible option, but may be the only course of action if the hazard or their probability of occurrence or both are particularly serious; Option 2 Risk reduction, either through (a) reducing the probability of occurrence of some events, or (b) through reduction in the severity of the consequences, such as downsizing the system, or (c) putting in place control measures; Option 3 Risk transfer, where insurance or other financial mechanisms can be put in place to share or completely transfer the financial risk to other parties; this is not a feasible option where the primary consequences are not financial; Option 4 Risk acceptance, even when it exceeds the criteria, but perhaps only for a limited time until other 186 measures can be taken.
  • 187. Quantitative Risk Analysis Luur, 2002 www.francobontempi.org Str o N GER 187
  • 188. www.francobontempi.org Str o N GER Risk Analysis, Assessment, Management (IEC 1995) 188
  • 189. www.francobontempi.org RISK CONCERNS Str o N GER DEFINE CONTEXT (social, individual, political, organizational, technological) RSK ANALYSIS (for the system are defined organization, scenarios, and consequences of occurences) RISK ANALYSIS RISK ASSESSMENT RISK MANAGEMENT RISK ASSESSMENT (compare risks against criteria) MONITOR AND REVIEW RISK TREATMENT option 1 - avoidance option 2 - reduction option 3 - transfer option 4 - acceptance 189
  • 190. www.francobontempi.org Str o N GER 190
  • 191. www.francobontempi.org Str o N GER RISK ANALYSIS SCENARIOS DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS FIRE EVENT 191
  • 192. ISHIKAWA DIAGRAM www.francobontempi.org Str o N GER 192
  • 193. www.francobontempi.org Str o N GER 193
  • 194. www.francobontempi.org Str o N GER EVENT TREE Triggering event Fire ignition Fire location 1. Fire extinguished by personnel 2. Intrusion of fire fighters 3. Fire suppression Scenario A1 YES (P1) AREA A (PA) NO (1-P1) Arson YES (P2) A2 YES (P3) NO (1-P3) A3 NO (1-P2) A4 YES (P3) NO (1-P3) A5 Short circuit B1 YES (P1) Explosion AREA B (PB) NO (1-P1) Cigarette fire YES (P2) B2 YES (P3) NO (1-P3) B3 NO (1-P2) B4 YES (P3) NO (1-P3) B5 Other C1 YES (P1) AREA C (PC) PREPARAZIONE NO (1-P1) YES (P2) C2 YES (P3) NO (1-P3) C3 EVOLUZIONE NO (1-P2) YES (P3) NO (1-P3) C4 194 C5
  • 195. www.francobontempi.org Str o N GER NUMERICAL MODELING SIMULATIONS DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) RISK ANALYSIS ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS 195
  • 196. www.francobontempi.org Str o N GER 196
  • 197. www.francobontempi.org Str o N GER 197
  • 198. www.francobontempi.org Str o N GER 198
  • 199. Str o N GER www.francobontempi.org F (frequency) – N (number of fatalities) curve • An F–N curve is an alternative way of describing the risk associated with loss of lives. • An F–N curve shows the frequency (i.e. the expected number) of accident events with at least N fatalities, where the axes normally are logarithmic. • The F–N curve describes risk related to largescale accidents, and is thus especially suited for characterizing societal risk. 199
  • 200. www.francobontempi.org Str o N GER FN-curves UK Road Rail Aviation Transport, 67-01 200
  • 201. www.francobontempi.org Str o N GER Persson, M. Quantitative Risk Analysis Procedure for the Fire Evacuation of a Road Tunnel - An Illustrative Example. Lund, 2002 201
  • 202. www.francobontempi.org Str o N GER Risk acceptance – ALARP (1) RISK MAGNITUDE INTOLERABLE REGION As Low As Reasonably Practicable BROADLY ACCEPTABLE REGION Risk cannot be justified in any circumstances Tolerable only if risk reduction is impracticable or if its cost is greatly disproportionate to the improvement gained Tolerable if cost of reduction would exceed the improvements gained As Low As Reasonably Achievable Necessary to maintain assurance that the risk remains at this level 202
  • 203. www.francobontempi.org Str o N GER Risk acceptance – ALARP (2) 203
  • 204. www.francobontempi.org Str o N GER 204
  • 205. www.francobontempi.org Str o N GER Risk reduction by design 205
  • 206. Str o N GER www.francobontempi.org Monetary values – cost of human life (!) What is the maximum amount the society (or the decisionmaker) is willing to pay to reduce the expected number of fatalities by 1? Typical numbers for the value of a statistical life used in cost-benefit analysis are 1–10 million euros. 206
  • 207. www.francobontempi.org Str o N GER 6 RESISTENZA 207
  • 208. www.francobontempi.org Str o N GER The burnt out interior of the Mont Blanc Tunnel 208
  • 209. www.francobontempi.org Str o N GER Curve temperatura - tempo 209
  • 210. Str o N GER www.francobontempi.org Types of fire exposure for tunnel analysis Cellulosic RABT-ZTV train Hydrocarbon RABT-ZTV car Hydrocarbon modified RWS 1400 1200 Temperature (°C) 1000 800 600 400 200 0 0 30 60 90 Time (min.) 120 150 180 210
  • 211. www.francobontempi.org Str o N GER Cellulosic curve • Defined in various national standards, e.g. ISO 834, BS 476: part 20, DIN 4102, AS 1530 etc. • This curve is the lowest used in normal practice. • It is based on the burning rate of the materials found in general building 211 materials.
  • 212. www.francobontempi.org Str o N GER Hydrocarbon (HC) curve • Although the cellulosic curve has been in use for many years, it soon became apparent that the burning rates for certain materials e.g. petrol gas, chemicals etc, were well in excess of the rate at which for instance, timber would burn. • The hydrocarbon curve is applicable where small petroleum fires might occur, i.e. car fuel tanks, petrol or oil tankers, certain chemical tankers etc. 212
  • 213. www.francobontempi.org Str o N GER Hydrocarbon mod. (HCM) curve • Increased version of the hydrocarbon curve, prescribed by the French regulations. • The maximum temperature of the HCM curve is 1300ºC instead of the 1100ºC, standard HC curve. • However, the temperature gradient in the first few minutes of the HCM fire is as severe as all hydrocarbon based fires possibly causing a temperature shock to the surrounding concrete structure and concrete spalling as a result 213 of it.
  • 214. www.francobontempi.org Str o N GER RABT ZTV curves RABT-ZTV (train) Time (minutes) T (°C) 0 15 5 1200 60 1200 170 15 RABT-ZTV (car) Time (minutes) T (°C) 0 15 5 1200 30 1200 140 15 • The RABT curve was developed in Germany as a result of a series of test programs such as the EUREKA project. In the RABT curve, the temperature rise is very rapid up to 1200°C within 5 minutes. • The failure criteria for specimens exposed to the RABT-ZTV time-temperature curve is that the temperature of the reinforcement should not exceed 300°C. There is no requirement for a maximum interface temperature. 214
  • 215. www.francobontempi.org Str o N GER RWS (Rijkswaterstaat) curve RWS, RijksWaterStaat Time T (minutes) (°C) 0 20 3 890 5 1140 10 1200 30 1300 60 1350 90 1300 120 1200 180 1200 • The RWS curve was developed by the Ministry of Transport in the Netherlands. This curve is based on the assumption that in a worst case scenario, a 50 m³ fuel, oil or petrol, tanker fire with a fire load of 300MW could occur, lasting up to 120 minutes. • The failure criteria for specimens is that the temperature of the interface between the concrete and the fire protective lining should not exceed 380°C 215 and the temperature on the reinforcement should not exceed 250°C.
  • 216. www.francobontempi.org Str o N GER 216
  • 217. www.francobontempi.org Str o N GER 217
  • 218. www.francobontempi.org Str o N GER Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar tunnel – gas temperature and Radiation”, Proceedings of the International Seminar on Catastrophic Tunnel Fires, Borås, Sweden, 20-21 November 2003. 218
  • 219. www.francobontempi.org Str o N GER 219
  • 220. www.francobontempi.org Str o N GER 220
  • 221. www.francobontempi.org Str o N GER Fire Scenario Recommendation 221
  • 222. www.francobontempi.org Str o N GER Verifiche 222
  • 223. www.francobontempi.org Str o N GER Mechanical Analysis • The mechanical analysis shall be performed for the same duration as used in the temperature analysis. • Verification of fire resistance should be in: – in the strength domain: Rfi,d,t ≥ Efi,requ,t (resistance at time t ≥ load effects at time t); – in the time domain: tfi,d ≥ tfi,requ (design value of time fire resistance ≥ time required) – In the temperature domain: Td ≤ Tcr (design value of the material temperature ≤ critical material temperature); 223
  • 224. www.francobontempi.org Str o N GER Verification of fire resistance (3D) R = structural resistance R=R(t,T)=R(t,T(t))=R(t) t = time T=T(t) T = temperature 224
  • 225. www.francobontempi.org Str o N GER Verification of fire resistance (R-safe) R = structural resistance Rfi,d,t Efi,requ,t t = time T = temperature 225
  • 226. www.francobontempi.org Str o N GER Verification of fire resistance (R-fail) R = structural resistance Failure ! Rfi,d,t Efi,requ,t t = time T = temperature 226
  • 227. www.francobontempi.org Str o N GER Verification of fire resistance (t) R = structural resistance Failure ! Efi,requ,t Rfi,d,t t = time T = temperature tfi,d ≥ tfi,requ 227
  • 228. www.francobontempi.org Str o N GER Verification of fire resistance (T) R = structural resistance Failure ! Efi,requ,t Rfi,d,t t = time Td ≤ Tcr T = temperature 228
  • 229. www.francobontempi.org Str o N GER Verification of fire resistance (T) R = structural resistance Failure ! Efi,requ,t Rfi,d,t t = time Td ≤ Tcr T = temperature 229
  • 230. www.francobontempi.org Str o N GER Comportamenti termo-meccanici 230
  • 231. www.francobontempi.org Str o N GER Trasformazione del calcestruzzo alle alte temperature 231
  • 232. www.francobontempi.org Str o N GER Parametri per la relazione tensioni-deformazioni per il calcestruzzo ad elevate temperature. 232
  • 233. www.francobontempi.org Str o N GER Calcestruzzo ad aggregato siliceo in condizioni di compressione uniassiale ad elevate temperature 233
  • 234. www.francobontempi.org Str o N GER Variazione del coefficiente di riduzione della resistenza a compressione del calcestruzzo ad aggregato siliceo con la temperatura 234
  • 235. www.francobontempi.org Str o N GER Relazioni tensioni-deformazioni per acciai da calcestruzzo armato ordinario laminati a caldo ad elevate temperature 235
  • 236. www.francobontempi.org Str o N GER Parametri per la relazione tensioni-deformazioni per acciai da calcestruzzo armato ordinario laminati a caldo, a temperature elevate 236
  • 237. Spalling Spalling is an umbrella term, covering different damage phenomena that may occur to a concrete structure during fire. These phenomena are caused by different mechanisms: •Pore pressure rises due to evaporating water when the temperature rises; •Compression of the heated surface due to a thermal gradient in the cross section; •Internal cracking due to difference in thermal expansion between aggregate and cement paste; •Cracking due to difference in thermal expansion/deformation between concrete and reinforcement bars; •Strength loss due to chemical transitions during heating. www.francobontempi.org Str o N GER 237
  • 238. Spalling criteria (literature review) • Explosive spalling occurs during the first 20-30 minutes of the standard cellulosic and hydrocarbon fire curves. • After the 2nd minute of a typical hydrocarbon exposure, spalling can occur in high strength concretes with polypropylene fibres and in concretes with high moisture content independent of the type of standard curve. Also, concretes with high moisture content can suffer spalling after the 3rd minute of exposure. • External temperature increments between 20-30ºC/min are typical in the occurrence of explosive spalling. • Temperature increments of more than 3ºC/min are enough for the occurrence of explosive spalling. • Concrete external layers can be released from concrete members when these reach temperatures between 250 - 420ºC; 375 - 425ºC. www.francobontempi.org Str o N GER 238
  • 239. www.francobontempi.org Str o N GER 239
  • 240. www.francobontempi.org Str o N GER 240
  • 241. www.francobontempi.org Str o N GER 7 CONCLUSIONI Conceptual design Resilience 241
  • 242. www.francobontempi.org Str o N GER 242
  • 243. www.francobontempi.org Str o N GER Conceptual Design 243
  • 244. www.francobontempi.org Str o N GER Conceptual Design DISASTER CHAIN MULTI-HAZARD BLACK-SWAN 244
  • 245. www.francobontempi.org Str o N GER Forensic Engineering Flow chart Tabella dotazioni Frejùs 245
  • 246. www.francobontempi.org Str o N GER Resilience 246
  • 247. www.francobontempi.org Str o N GER Resilience • Resilience is defined as “the positive ability of a system or company to adapt itself to the consequences of a catastrophic failure caused by power outage, a fire, a bomb or similar event” or as "the ability of a system to cope with change". 247
  • 248. www.francobontempi.org Str o N GER RESILIENCE 248
  • 249. www.francobontempi.org Str o N GER 249
  • 250. www.francobontempi.org Str o N GER • • • • • ACKNOWLEDGEMENTS Dr. Konstantinos GKOUMAS – Uniroma1 Dr. Francesco PETRINI – Uniroma1 Ing. Alessandra LO CANE – MIT Dr. Filippo GENTILI – Coimbra (PT) Mr. Tiziano BARONCELLI – Uniroma1 250
  • 251. Str o N GER www.stronger2012.com 251 251
  • 252. StroNGER S.r.l. Research Spin-off for Structures of the Next Generation: Energy Harvesting and Resilience Roma – Milano – Terni – Atene - Nice Cote Azur Str o N GER www.stronger2012.com Sede operativa: Via Giacomo Peroni 442-444, Tecnopolo Tiburtino, 00131 Roma (ITALY) - info@stronger2012.com 252