Your SlideShare is downloading. ×
Datos Geométricos y Espaciales en SQL Server 2008
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Datos Geométricos y Espaciales en SQL Server 2008

1,154
views

Published on

Published in: Technology

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,154
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • United Kingdom244,820 km² (79th)94,526 sq mi Guinea 245,857 km² (78th)94,926 sq mi
  • Top three show the level 1, Level 2 and then Level 3 and 4 intersections.If we stored all of these intersections we would have 85 matches. What we do find is that some of the cells are complete matches these don’t need to be broken down to the lower level cells. Like in Figure 4.However we still have a large number of matches, depending on the cells per object setting on the index the tessellation process will stop once it hits the limit as we have in Figure 5.This shows how imprecise the index is. It is only meant as a filter to avoid doing a very expensive calculation on all the data.
  • GIS data is used to produce both digital and paper maps - the underlying data is identical. GIS data is supplied in vector format - as opposed to raster format. Vector data uses geometric objects (points, lines or polygons) to depict spatial information. For example, linear features like roads and railways are depicted as lines. The raster data model represents geographical space by dividing it in a series of cells. The further you zoom in the more obvious the "cells" (also known as pixels) become. Raster data is available as printed paper maps, or on digital media (CD Rom or DVD Rom).
  • Latitude: Imaginary horizontal mapping lines on the Earth. They are known as "parallels" of latitude because they run parallel to the Equator. The number of degrees of latitude shows how far north or south of the Equator a specific location is.
  • Longitude: Imaginary vertical mapping lines on Earth known as "meridians" of longitude. The number of degrees of longitude shows how far east or west of the Prime Meridian a specific location is.
  • Geocentric model of the universe is the theory that the Earth is the center of the universe and other objects go around it.
  • Transcript

    • 1. Datos Geométricos yEspaciales en SQL Server2008Caso práctico parasacarle el mejorprovechoFernando Guerrero fguerrero@solidq.comJavier Loria javier@solidq.com
    • 2. Agenda Porque datos espaciales Coordenadas y Proyecciones Creacion de Tablas/Insercion Datos Funciones Geoespaciales© 2008 Solid Quality http://summit.solidq.com 2
    • 3. Porqué Datos Espaciales? Riesgo Agricultura en Seguros/Banca de Riesgos  Manejo Ambientales y Manejo de Naturales Optimización de Entregas Recursos Naturales  Militar Decisiones Geográficas de Arqueología  Salud GeologíaMercadeo  Utilitarios Catrasto LIS (Land (Agua, Gas, Electricidad) Bienes Raices Information System)  Planeamiento Urbano  GIS Negocios Patrones de Ruteo de compradores Mercadeo Rural Transportehttp://summit.solidq.com© 2008 Solid Quality Urbano y Rural 3
    • 4. From San Jose, CR ToAlicante, Spain http://summit.solidq.com 4
    • 5. San José/Costa Rica-Alicante/España http://summit.solidq.com
    • 6. Caso PrácticoVentas al detalle http://summit.solidq.com
    • 7. Caso Práctico Mercadeo:  Las 4 P’s: Precio, Producto, Promoción y Plaza. Localización Optima de Agencias Madrid  Sucursal 1: Banco de España.  Sucursal 2: Bilbao  Sucursal 3: Argüelles.  Sucursal 4: ? http://summit.solidq.com 7
    • 8. Sucursales© 2008 Solid Quality http://summit.solidq.com 8
    • 9. Agenda Porque datos espaciales Coordenadas y Proyecciones Creación de Tablas/Inserción Datos Funciones Geo-espaciales© 2008 Solid Quality http://summit.solidq.com 9
    • 10. Sistemas de Coordenadas Geografía: habilita la localización en la tierra que pueda ser especificada por medio de tres co-ordenadas. Sistemas:  Cartesiano  Geocéntrico  Geodético http://summit.solidq.com
    • 11. Geodético© 2008 Solid Quality http://summit.solidq.com 11
    • 12. Proyecciones http://summit.solidq.com 12
    • 13. Proyecciones (1)/UTM Mercator http://summit.solidq.com 13
    • 14. Porque importa?Guinea United Kingdom245,857 km² (78th) 244,820 km² (79th)94,926 sq mi 94,526 sq mi http://summit.solidq.com
    • 15. Creación dela Tabla de Sucursales http://summit.solidq.com
    • 16. Instancias Geométricas/Geográficas Texto único  Texto Múltiple  STGeomFromText  STGeomCollFromText  STPointFromText  STMPointFromText  STLineFromText  STMLineFromText  STPolyFromText  STMPolyFromText Binario múltiple  Binario múltiple • STGeomFromWKB  STMPointFromWKB • STPointFromWKB  STMLineFromWKB • STLineFromWKB  STMPolyFromWKB • STPolyFromWKB  STGeomCollFromWKB • Adicionales – GeomFromGml 16 – http://summit.solidq.com Point
    • 17. Creación de Instancias Puntos: POINT (3 4) Multi-Puntos: MULTIPOINT((2 3), (7 8 9.5)) Líneas: LINESTRING(1 1, 2 4, 3 9) Multi-líneas: MULTILINESTRING((0 2, 1 1), (1 0, 1 1)) Polígonos: POLYGON((0 0, 0 3, 3 3, 3 0, 0 0), (1 1, 1 2, 2 1, 1 1)) Multi-Polígonos MULTIPOLYGON(((0 0, 0 3, 3 3, 3 0, 0 0), (1 1, 1 2, 2 1, 1 1)), ((9 9, 9 10, 10 9, 9 9))))© 2008 Solid Quality http://summit.solidq.com 17
    • 18. Llenado de Tabla de Sucursales http://summit.solidq.com
    • 19. Agenda Porque datos espaciales Coordenadas y Proyecciones Creación de Tablas/Inserción Datos Funciones Geo-espaciales© 2008 Solid Quality http://summit.solidq.com 19
    • 20. Funciones Geométricas • STArea • STArea • STAsBinary • STAsBinary • Funciones Geográficas STAsText • STAsText Geométricas Funciones • STBuffer • STBoundary • STDimension • STBuffer • STDisjoint • STCentroid • STDistance • STContains • STEndpoint • STConvexHull • STGeometryN • STCrosses • STGeometryType • STDifference • STIntersection • STDimension • STIntersects • STDisjoint • STIsClosed • STDistance • STIsEmpty • STEndpoint •© 2008 Solid Quality STLength • STEnvelope http://summit.solidq.com 20
    • 21. Funciones Favoritas Validación  Modificación  STSrid  STConvexHull  STGeometryType  STEnvelope  STIsSimple  STBoundary  STIsEmpty  Relación  STDimension  STIntersects Descriptivas  STDistance  STArea  STLength  STCentroid© 2008 Solid Quality http://summit.solidq.com 21
    • 22. Funciones Geográficasen SQL 2008 http://summit.solidq.com
    • 23. Agenda Porque datos espaciales Coordenadas y Proyecciones Creación de Tablas/Inserción Datos Funciones Geo-espaciales© 2008 Solid Quality http://summit.solidq.com 23
    • 24. Indices Espaciales Malla 4 niveles  Usa árboles B+ Cada nivel divide al  Densidad anterior  Low: 4x4 Numeras las celdas  Medium: 8x8  High: 16x16 Spatial Index - Conceptual Model http://summit.solidq.com
    • 25. Proceso TellesaciónNivel 1 Nivel 2 Niveles 3 & 4: 48 CeldasAciertos completos Limite de objetosno se fragmentan Máximo=15 (13(42 Celdas Celdas) http://summit.solidq.com
    • 26. Métodos Soportados Geometría  Geografía  STContains  STIntersects  STDistance  STEquals  STEquals  STDistance  STIntersects  STOverlaps  STTouches  STWithin© 2008 Solid Quality http://summit.solidq.com 26
    • 27. Aplicaciones de Geometría© 2008 Solid Quality http://summit.solidq.com 27
    • 28. Agenda Porque datos espaciales Coordenadas y Proyecciones Creación de Tablas/Inserción Datos Funciones Geo-espaciales© 2008 Solid Quality http://summit.solidq.com 28
    • 29. http://summit.solidq.com