Sap smart meter analytics   overview.pdf 092111
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Sap smart meter analytics overview.pdf 092111

on

  • 2,838 views

 

Statistics

Views

Total Views
2,838
Views on SlideShare
2,838
Embed Views
0

Actions

Likes
0
Downloads
111
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Sap smart meter analytics overview.pdf 092111 Presentation Transcript

  • 1. SAP Smart Meter AnalyticsPowered by SAP HANASolution Overview
  • 2. Agenda  Key Trends and Issues  Solution Overview  Why SAP?  Appendix© 2011 SAP AG. All rights reserved. 2
  • 3. External PressuresMajor changes are elevating the strategic importance of data Government Regulations  Unbundling of energy markets  Promotion of renewable energy and energy efficiency  Enhanced regulatory reporting and rules Market Environment  Increasing competition  New service business revenue opportunities  More demanding customers Technical Innovation  AMI / Sensing & Measurement Technology  Distributed generation  Electric Vehicles© 2011 SAP AG. All rights reserved. 3
  • 4. Smart Metering is a Disruptive ChangeMassive volumes of data expected from this source Classic Meter Smart Meter Vs.  1 reading per customer/year  15-min (96 values) per customer/day  1KB per reading  1KB per reading __________________________ ________________________________ = ~ 1 GB raw data per year = ~ 400GB raw data per year Example: Utility with 1.2 MM meters in Germany Is it an Opportunity or a Problem?© 2011 SAP AG. All rights reserved. 4
  • 5. Imagine if you could… Increase adoption rates for demand-side management Increase revenue from new programs energy services Reduce direct energy costs via Reduce revenue loss from theft more accurate load forecasting Achieve energy savings and Boost customer satisfaction emissions targets and retention© 2011 SAP AG. All rights reserved. 5
  • 6. Agenda  Key Trends and Issues  Solution Overview  Why SAP?  Appendix© 2011 SAP AG. All rights reserved. 6
  • 7. SAP Smart Meter AnalyticsPowered by SAP HANA Powerful Customer Energy Efficiency Platform for Consumption-Insights & Segmentation Benchmarking driven Processes Instant analysis of Energy efficiency Pre-packaged, web service- customers’ energy benchmarking based on enabled In-memory consumption and statistical analysis of platform to enable advanced segmentation consumption data and root consumption-driven based on smart meter data cause analysis business processes throughout the company© 2011 SAP AG. All rights reserved. 7
  • 8. Powerful Customer Insights and Segmentation Capabilities:  Instant analysis of massive volumes of smart meter data at any level of granularity, aggregation, and dimension  Customer segmentation based on consumption pattern profiles, customer attributes, and consumption metrics Benefits:  Deliver targeted demand-side mgmt programs and communications  Increase load forecast accuracy and savings in direct energy costs  Manage customer relationships based on customer value attributes, e.g. predictability© 2011 SAP AG. All rights reserved. 8
  • 9. Instant aggregation at any level against the raw data set At the finger tips of the business users 0 hrs 24 hrs 0,06 0,05 0,04 0,03 0,02 0,01 0 0,04 0,03 0,02 0,01consumption [kWh] 0 0,05 0,04 0,03 0,02 0,01 0 1,00E-01 8,00E-02 6,00E-02 4,00E-02 2,00E-02 0,00E+00 0,05 0,04 0,03 0,02 0,01 0 © 2011 SAP AG. All rights reserved. 9
  • 10. Pattern Profiles – Understanding Customer Usage 0 hrs 24 hrs 0,06 0,05 0,04 0,03 0,02 0,01 0 0,04 0,03 0,02 0,01 consumption [kWh] 0 0,05 0,04 0,03 In-memory pattern recognition 0,02 0,01 0 2 algorithm crunches typical load profiles out of those huge amount 1,00E-01 8,00E-02 of data to “summarize” those data 6,00E-02 4,00E-02 and categorize user behavior. 2,00E-02 0,00E+00 0,05 0,04 0,03 Instead of exploring millions of individual 0,02 0,01 0 3 profiles it is sufficient to take a look at the typical pattern in the data to understand1 typical size: millions of daily profiles user behavior. Those pattern are the basis for other follow-up processes Millions of daily consumption profiles contain valuable information about customer behavior for a better energy management© 2011 SAP AG. All rights reserved. 10
  • 11. Compelling User Interface enables business users© 2011 SAP AG. All rights reserved. 11
  • 12. Energy Efficiency BenchmarkingCapabilities: Energy efficiency benchmarking that compares customers against peer group based on statistical predictions On-the-fly update of benchmarking attributes (e.g., square footage, location) Root cause analysis of energy usage variance based on automated heuristicsBenefits: Improve energy efficiency of end customers Increase revenues by up-selling and cross-selling new energy services Help reach energy saving targets© 2011 SAP AG. All rights reserved. 12
  • 13. How Energy Efficiency Benchmarking works inSAP Smart Meter Analytics This customer is consuming more energy than predicted and deviates from the expected consumption pattern in particular in the late afternoon!  Customer type 45  Type of building 40 35  Electrical devices 30  Historic behavior range of expected 25 of “similar” prediction 20 customers actual 15 10  Temperature 5 dependency 0 1 3 5 7 9 11 13 15 17 19 21 23  … hrs hrs hrs hrs hrs hrs hrs hrs hrs hrs hrs hrs© 2011 SAP AG. All rights reserved. 13
  • 14. Compute benchmark for peer group and identify outliersA benchmarking example Business Objective • From a retailer chain with ~ 500 stores find those stores which are least energy efficient and would profit from energy management services. Available Data: • Half hourly Smart Meter Data • Climatic region • Sales square footage • Number of opening hours • …Energy Benchmarking: Relative Store-level Energy EfficiencyCompute a regression model from the data of Any surplus consumption which cannot beall stores, which estimates the dependency of justified from what we know about the storeconsumption on facility configuration. is an energy services opportunity.© 2011 SAP AG. All rights reserved. 14
  • 15. Actionable insight readily available on mobile devicesA benchmarking example© 2011 SAP AG. All rights reserved. 15
  • 16. Flexible and dynamic scorecard reportingA benchmarking example© 2011 SAP AG. All rights reserved. 16
  • 17. Drill-down capability for on-the-spot root cause analysisA benchmarking example© 2011 SAP AG. All rights reserved. 17
  • 18. Platform for Consumption-Driven ProcessesSAP Smart Meter Analytics SAP Smart Meter Analytics Core Capabilities  Aggregation  Pattern Recognition  Benchmarking  Exploration Churn Management Tariff Development Fraud Detection Customer Service Energy Services Energy Settlement Balance and Demand Energy Portfolio Management Grid Management Forecasting DSM Activities Online Portal© 2011 SAP AG. All rights reserved. 18
  • 19. Architecture OverviewSAP Smart Meter Analytics SAP Smart Meter Analytics SAP NetWeaver 7.3 Engine y g ( d , t ) = ∑ yc ( d , t ) ˆ ˆ SAP Netweaver c Business Client Smart Meter In- Analytics Memory Application SAP HANA SAP NetWeaver BW 7.3 SAP BusinessObjects Data Services SAP BW ETL Meter Data Unification System Utility Content (MDUS) Template Web portals & mobile apps External data Marketing data, SAP Weather data Business Suite MDUS (MDM system) Third party apps© 2011 SAP AG. All rights reserved. 19
  • 20. SAP HANA and in-memory computing technologyimpacts velocity, volume and value 3600x 460B 21%* Faster reporting Data records Average increase speed analyzed in less in revenue than a second * Source: Oxford Economics© 2011 SAP AG. All rights reserved. 20
  • 21. Why SAP Smart Meter Analytics, powered by SAP HANA? • Leverage data you already have to extract maximum Complete insight from smart meter data Business Process and push actionable intelligence back into CRM and other systems • Get instant results for Power of SAP In- aggregations at any level, as Memory well as complex calculations that run against the raw data Computing set Flexible and • Enable business users to navigate through your data to Configurable identify issues and understand Analytics root causes Business Impact© 2011 SAP AG. All rights reserved. 21
  • 22. Agenda  Key Trends and Issues  Solution Overview  Why SAP?  Appendix© 2011 SAP AG. All rights reserved. 22
  • 23. The SAP difference Trusted Lightning Fast Easy Anytime Industry/LoB Collaborative Expertise© 2011 SAP AG. All rights reserved. 23
  • 24. Thank You!
  • 25. © 2011 SAP AG. All rights reserved.No part of this publication may be reproduced or transmitted in any form or for any SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObjectspurpose without the express permission of SAP AG. The information contained Explorer, StreamWork, and other SAP products and services mentioned herein asherein may be changed without prior notice. well as their respective logos are trademarks or registered trademarks of SAP AGSome software products marketed by SAP AG and its distributors contain in Germany and other countries.proprietary software components of other software vendors. Business Objects and the Business Objects logo, BusinessObjects, CrystalMicrosoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other BusinessMicrosoft Corporation. Objects products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of Business Objects Software Ltd.IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, Business Objects is anSystem x, System z, System z10, System z9, z10, z9, iSeries, pSeries, xSeries, SAP company.zSeries, eServer, z/VM, z/OS, i5/OS, S/390, OS/390, OS/400, AS/400, S/390Parallel Enterprise Server, PowerVM, Power Architecture, POWER6+, POWER6, Sybase and Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and otherPOWER5+, POWER5, POWER, OpenPower, PowerPC, BatchPipes, Sybase products and services mentioned herein as well as their respective logosBladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2 Connect, RACF, are trademarks or registered trademarks of Sybase, Inc. Sybase is an SAPRedbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX, Intelligent Miner, WebSphere, company.Netfinity, Tivoli and Informix are trademarks or registered trademarks of IBM All other product and service names mentioned are the trademarks of theirCorporation. respective companies. Data contained in this document serves informationalLinux is the registered trademark of Linus Torvalds in the U.S. and other purposes only. National product specifications may vary.countries. The information in this document is proprietary to SAP. No part of this documentAdobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or may be reproduced, copied, or transmitted in any form or for any purpose withoutregistered trademarks of Adobe Systems Incorporated in the United States and/or the express prior written permission of SAP AG.other countries.Oracle and Java are registered trademarks of Oracle and/or its affiliates.UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, andMultiWin are trademarks or registered trademarks of Citrix Systems, Inc.HTML, XML, XHTML and W3C are trademarks or registered trademarks ofW3C®, World Wide Web Consortium, Massachusetts Institute of Technology. © 2011 SAP AG. All rights reserved. 25
  • 26. © 2011 SAP AG. Alle Rechte vorbehalten.Weitergabe und Vervielfältigung dieser Publikation oder von Teilen daraus sind, zu Java ist eine eingetragene Marke von Sun Microsystems, Inc.welchem Zweck und in welcher Form auch immer, ohne die ausdrückliche schriftliche JavaScript ist eine eingetragene Marke der Sun Microsystems, Inc., verwendet unter derGenehmigung durch SAP AG nicht gestattet. In dieser Publikation enthaltene Informationen Lizenz der von Netscape entwickelten und implementierten Technologie.können ohne vorherige Ankündigung geändert werden. SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObjects Explorer,Die von SAP AG oder deren Vertriebsfirmen angebotenen Softwareprodukte können StreamWork und weitere im Text erwähnte SAP-Produkte und ­Dienstleistungen sowie dieSoftwarekomponenten auch anderer Softwarehersteller enthalten. entsprechenden Logos sind Marken oder eingetragene Marken der SAP AG in DeutschlandMicrosoft, Windows, Excel, Outlook, und PowerPoint sind eingetragene Marken der und anderen Ländern.Microsoft Corporation. Business Objects und das Business-Objects-Logo, BusinessObjects, Crystal Reports,IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, Crystal Decisions, Web Intelligence, Xcelsius und andere im Text erwähnte Business-System z, System z10, System z9, z10, z9, iSeries, pSeries, xSeries, zSeries, eServer, Objects-Produkte und ­Dienstleistungen sowie die entsprechenden Logos sind Marken oderz/VM, z/OS, i5/OS, S/390, OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server, eingetragene Marken der Business Objects Software Ltd. Business Objects ist einPowerVM, Power Architecture, POWER6+, POWER6, POWER5+, POWER5, POWER, Unternehmen der SAP AG.OpenPower, PowerPC, BatchPipes, BladeCenter, System Storage, GPFS, HACMP, Sybase und Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere und weitere im TextRETAIN, DB2 Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX, erwähnte Sybase-Produkte und -Dienstleistungen sowie die entsprechenden Logos sindIntelligent Miner, WebSphere, Netfinity, Tivoli und Informix sind Marken oder eingetragene Marken oder eingetragene Marken der Sybase Inc. Sybase ist ein Unternehmen der SAPMarken der IBM Corporation. AG.Linux ist eine eingetragene Marke von Linus Torvalds in den USA und anderen Ländern. Alle anderen Namen von Produkten und Dienstleistungen sind Marken der jeweiligenAdobe, das Adobe-Logo, Acrobat, PostScript und Reader sind Marken oder eingetragene Firmen. Die Angaben im Text sind unverbindlich und dienen lediglich zuMarken von Adobe Systems Incorporated in den USA und/oder anderen Ländern. Informationszwecken. Produkte können länderspezifische Unterschiede aufweisen.Oracle ist eine eingetragene Marke der Oracle Corporation. Die in dieser Publikation enthaltene Information ist Eigentum der SAP. Weitergabe undUNIX, X/Open, OSF/1 und Motif sind eingetragene Marken der Open Group. Vervielfältigung dieser Publikation oder von Teilen daraus sind, zu welchem Zweck und in welcher Form auch immer, nur mit ausdrücklicher schriftlicher Genehmigung durch SAP AGCitrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame und MultiWin sind gestattet.Marken oder eingetragene Marken von Citrix Systems, Inc.HTML, XML, XHTML und W3C sind Marken oder eingetragene Marken des W3C®, WorldWide Web Consortium, Massachusetts Institute of Technology. © 2011 SAP AG. All rights reserved. 26
  • 27. Appendix
  • 28. Sample AMI system architecture with SAP Smart MeterAnalytics Smart Meter AnalyticsSmart Meters Interval Data AMI TOU Blocks Meter Reading MDUS Master Data …Smart Meters Customers Process Data AMI Event Data Technical Infrastructure Business Process Execution © 2011 SAP AG. All rights reserved. 28
  • 29. Another sample AMI system architecture with SAP SmartMeter Analytics Smart Meter Analytics Market Smart Meter Analytics Communication of Interval Data IntervalSmart Meters Interval Data AMI Data TOU Blocks Meter Reading MDUS MDUS Master Data Smart Meters … Customers AMI Process Data Event Data Depending on Technical Infrastructure Business Process Execution market model Metering / Distribution Company Retailer © 2011 SAP AG. All rights reserved. 29