Trigonometric (hayati pravita)

593 views
471 views

Published on

0 Comments
4 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
593
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
21
Comments
0
Likes
4
Embeds 0
No embeds

No notes for slide

Trigonometric (hayati pravita)

  1. 1. Equation Ratio Graph TrigonometricProject Identity Sine Rule CosineManagement Triangle’s Rule Area
  2. 2. RATIOS of TRIGONOMETRI
  3. 3. RATIO TRIGONOMETRIC onEXTRAORDINARY ANGLES 0 1 1 0 0 1 ~
  4. 4. NOTE:
  5. 5. Trigonometric Ration on Quadrants Menggunakan berkebalikkannya
  6. 6. Trigonometric Ration on QuadrantsNOTE: For quadrant I, all ratio of trigonometric is positive (+) For quadrant II, only sinus and cosec are positive (+) For quadrant III, only tan and cotg are positive (+) For quadrant IV, only cosine and sec are positive (+)
  7. 7. Trigonometric Ration of Related AngleQuadrant I
  8. 8.
  9. 9. Trigonometric Ration of Related AngleQuadrant II
  10. 10.
  11. 11. Trigonometric Ration of Related AngleQuadrant III
  12. 12.
  13. 13. Trigonometric Ration of Related AngleQuadrant IV
  14. 14.
  15. 15. Trigonometric Ration of Related AngleAngle (n . 90° ± α) for n ϵ real number For n (even number) consist Example : sin (180 – α)° = sin (2 . 90 – α)° = sin α cos (360 – α)° = cos (4 . 90 – α)° = cos α tan (360 – α)° = tan (4 . 90 – α)° = - tan α positive (+) or negative (-) based on their quadrant.
  16. 16. Trigonometric Ration of Related Angle For n (odd number) Function is changed (complement) The change are : sin  cos cos sin tag  cotgExample : sin (90 – α)° = (1 . 90 – α)° = cos α° cos (270 – α)° = (3 . 90 – α)° = - sin α° tan (90 – α)° = (1 . 90 – α)° = cotg α°positive (+) or negative (-) based on their quadrant.
  17. 17. Trigonometric Ration of Related AngleSo, we can conclude that :90 ± α = change trigonometric function with their complement180 ± α = the trigonometric function is consist270 ± α = change trigonometric function with their complement360 ± α = the trigonometric function is consist REMEMBER! positive (+) or negative (-) based on their quadrant.
  18. 18. Trigonometric with ANGLE > 360° K . 90 + αThe Method :1. Determine K, it’s even or odd. If even the trigonometry is consistent. If odd, the trigonometry to be complement of it.2. K divided by 4, and find the remainder.3. Then the remainder is the last quadrant that indicate the quadrant4. Solve it
  19. 19. Trigonometric with ANGLE > 360°
  20. 20. Trigonometric with ANGLE > 360°
  21. 21. NEGATIVE ANGLE
  22. 22. NEGATIVE ANGLE
  23. 23. NEGATIVE ANGLE
  24. 24. TRIGONOMETRY IDENTITY
  25. 25. Trigonometric Equation A trigonometric equation is any equation that contains a trigonometric function. There are 3 kinds of Trigonometric Equation: 1. Sinus 2. Cosine 3. Tangent To solve this problem, we use different formula for sinus, cosine, and tangent.
  26. 26. Problem..1. Find the value of x that satisfies trigonometric equation of , for 0° ≤ x ≥ 360° ◦ Problem solution: x = A + K.360 x = 30 + K.360 or x = (180-A) + K.360 x = (180-30) + K.360 x = 150 + K.360 if: K = 0  x = 30 SS = {30,° 150°} K = 1  x = 390 (not satisfied) or K = 0  x = 150
  27. 27. Problem..2. Find the solution set of , for 0° ≤ x ≥ 360° Problem Solving 1. K = 0  x = 60 I. K = 1  x = 240 K = 2  x = 420 (NS) 2. K = 0  x = -60 (NS) K = 1  x = 120 K = 2  x = 300 2. SS = {60°, 120°, 240°, 300°} 240°,
  28. 28. Problem..3. Find the solution set of , for 0° ≤ x ≥ 360° Problem solution K=0 K =1  (NS) SS = { }
  29. 29. SINUS In degrees (°) A is on A is on ◦ sin x = sin A quadrant I Iand quadrant and II, so the sin II, so the sin x = A + K . 360 always (+) always (+) ◦ or x = (180-A) + K . 360 In radian (π) ◦ sin x = sin A x = A + K . 2π x = (π-A) + K. 2π K is integer(K = + 1, + 2, + 3, + 4, ….)
  30. 30. COSINE In degrees (°) ◦ cos x = cos A x = A + K . 360 ◦ or x = -A + K . 360 In radian (π) ◦ cos x = sin A x = A + K . 2π x = -A + K. 2π K is integer(K = + 1, + 2, + 3, + 4, ….)
  31. 31. TANGENT In degrees (°) ◦ tan x = sin A x = A + K . 180 In radian (π) ◦ tan x = sin A x=A+K.π K is integer(K = + 1, + 2, + 3, + 4, ….)
  32. 32. Trigonometric Function Real Number set or its section set. Trigonometric function value is value from the function for each given value x. e.g: f(x) = sin x f(x) = cos x f(x) = tan x Based on this function, we can make a simple graph easily.
  33. 33. Trigonometric Function Example: If function f is defined by f(x) = sin2 x – cos2 x, determine value x causing function f intersecting X-axis!• Problem Solving: function f intersects X-axis b) sin x + cos x = 0 if f(x) = 0 sin x = -cos x sin2x – cos2x =0 = -1  tan x = - (sin x – cos x)(sin x + cos 1 x) =0 a) sin x – cos x = 0 x = 135° and 315° sin x = cos x So, the solution set is: = 1  tan x = 1 {45°, 135°, 225°, 315°}  can causing function f has x = 45° and 225° zero value
  34. 34. Trigonometric Function Graph Simple Trigonometric Function Graph is a geometric description of a trigonometric function. This graph can make us easily to analyze the value of the function, types of functions, etc.
  35. 35. Trigonometric Function Graph The simple trigonometric function graph: 1. The graph of function f(x) = sin x, for 0 ≤ x ≥ 360 2. The graph of function f(x) = cos x, for 0 ≤ x ≥ 360 3. The graph of function f(x) = tan x, for 0 ≤ x ≥ 360
  36. 36. Drawing a Simple Graph How to make it? 1. Determine the intersect point of x-axis 2. Determine the intersect point of y 3. Find vertex point (max and min) 4. Draw that graph
  37. 37. Problem.. If the function of trigonometric is f(x) = sin 3x, for 0° ≤ x ≥ 360°. Draw the graph of that function! i. Find the intersect point of x-axis  y = 0 ii. Find the intersect point of y-axis  x = 0 iii. Find the vertex point (max-min) iv. Draw that graph
  38. 38. Problem.. i. f(x) = sin 3x y = sin 3x K=0x=0 K = 1  x = 120 0 = sin 3x K = 2  x = 240 sin 3x= sin 0 K = 3  x = 360 3x = 0 + K.360 K = 0  x = 60 x = 0 + K.120 K = 1  x = or 3x = (180-0) + 180 K.360 K = 2  x = 3x = 180 + K.360 300 x = 60 + K.120 Intersect point x-axis are {(0°,0), (60°, 0), (120°, 0), (180°, 0), (240°, 0), (300°,0), (360°, 0)}
  39. 39. Problem.. ii. y = sin 3x K = 0  x = 90° Intersect point K = 1  x = y = sin 0 y-axis = (0°,0) 210° K = 2  x = y=0 330° Min iii. Vertex point for y = sin 3x the max point is Max 1 -1 = sin 3x for y = sin 3x the max point is 1 sin 3x = sin 270° 1 = sin 3x K = 0  x = 30° 3x = 270° + K.360 K = 1  x = x = 90° + K.120 sin 3x = sin 90° Min = {(90°,- 150° 3x = 90° + K.360 K = 2  x = 1), (210°, -1), x = 30° + K.120 270° (330°, -1)}Max = {(30°,1),(150°,1), (270°, 1)}
  40. 40. Y = sin 3x Y = 3sin ( x + 30 0 )1 SHIFT GRAPH TRIGONOMETRIC FUNCTIONS 90 0 210 0 330 0 30 0 60 0 1200 1500 1800 240 0270 0300 0 360 0 0 -1 a = sum of wave If sin was replaced by cos Y = a sin (x+ α) Sin = shape of graph or tan it can change the α = shifting shape of graph.
  41. 41. Problem..If given trigonometric function f(x) = 2 cos (x-30), draw the graph of that function!Problem solution: i. Find the intersect point of x-axis  y = 0 ii. Find the intersect point of y-axis  x = 0 iii. Find the vertex point (max-min) iv. Draw that graph
  42. 42. Problem.. i. f(x) = 2 cos (x-30) y = 2 cos (x-30) 0 = 2 cos (x-30) 0 = cos (x-30) cos (x-30) = sin 90 x-30 = 90 + K.360 K = 0  x = 120 x = 120 + K.360 or K=0 x-30 = -90 + K.360 x = -60 K = 1  x = x = -60 + K.360 300 Intersect point x-axis are{(-60°,0), (120°, 0), (300°, 0)}
  43. 43. Problem.. Intersect point y-axis = (0°, √3) ii. y = 2cos (x-30) y = 2cos (-30) *cosmin-cosplus K = 0  x = y = 2cos 30 210° y = 2. ½√3  y = √3 Min for y = sin 3x the max point is -2 iii. Vertex point -2 = 2cos (x-30) -1 = cos (x-30) Max cos (x-30) = cos 180° for y = 2cos (x-30) x-30 = 180 + K.360 x = 210° + K.360 the max point is 2K = 0  x = 2 = 2cos (x-30) Min =30° 1 = cos (x-30) {(210°, -2), cos (x-30) = cos 0° Max = x-30 = 0 + K.360 {(30°,2)} x = 30° + K.360
  44. 44. 2 Y = 2 Cos (x-30)√3 300 0 210 00 60 0 120 0 360 0-2 4
  45. 45. Sin Function Graph The graph of function f(x) = sin x, for 0 ≤ x ≥ 360 x 0 30 90 150 180 210 270 330 360 y 0 ½ 1 ½ 0 -1/2 -1 -1/2 0
  46. 46. y Y = sin x1 270 0 x 0 0 180 0 360 0 90 -1 50
  47. 47. Cosine Function Graph The graph of function f(x) = cos x, for 0 ≤ x ≥ 360 x 0 60 90 120 180 240 270 300 360 y 1 1/2 0 1/2 -1 - 1/2 -1 1/2 1
  48. 48. 1 Y = Cos x 270 00 90 0 180 0 360 0-1 52
  49. 49. Tan Function Graph The graph of function f(x) = tan x, for 0 ≤ x ≥ 360x 0 45 90 135 180 225 270 315 360 y 0 1 ∞ -1 0 1 ∞ 1 0
  50. 50. Y = Tg x1 135 0 270 0 315 0 0 45 0 0 225 0 360 0 90 0 180-1
  51. 51. Sinus Rules C b a A B D It can be used if there’re given 2 angles, and a side
  52. 52. Problem.. In Triangle ABC, given c = 6cm, B = 600 and C = 450. Find the length of b!• Problem Solving: 0 1 b c 2 3 6 b 1 SinB SinC 2 2 b 6 6 3 2 b Sin600 Sin450 2 2 b 6 6 6 1 b 3 6 2 3 1 2 2 2
  53. 53. Cosine Rules C b a A B D
  54. 54. Problem.. In Triangle ABC, given a = 6, b = 4 and C = 1200. Find the length of c!Problem Solution: c2 = a2 + b2 – 2.a.b.cos C c2 = (6)2 + (4)2 – 2.(6).(4).cos 1200 c2 = 36 + 16 – 2.(6).(4).( – ½ ) C c2 = 52 + 24 120 0 b=4 a c 2 = 76 c = √76 = 2√19 A c= B 6
  55. 55. C Triangle’s Area b a A B 2 Sides and Measure 1 of c D its Angel are Determined.  2 Angles and Measure 1 of its side is Determined. 3 Sides
  56. 56. Problem..  In triangle ABC given A = 1500 b = 12 cm and c = 5 cm, so the area of triangle ABC is.. Problem Solution : C Area of ABC = ½ b c sin A b=12 a = ½ (12) (5) sin 1500A 1500 = ½(12) (5) sin (1800 – 300)c= B 5 = ½ (12) (5) sin 300 = ½ (12) (5) ½
  57. 57. Problem..Find the area of ABC Triangle if given a = 10, b = 12, and c = 14Problem Solution: C b=12 a=10 A c=14 B
  58. 58. Problem..Find the area of triangle ABC if given a = 5, A = 60°, C = 75°.Problem Solution: C b 75° a=5 60° 45° A c B

×