Your SlideShare is downloading. ×
0
Electromagnetism University of Twente Department Applied Physics First-year course on Part III: Electromagnetic Waves : Sl...
Electromagnetic Waves <ul><li>Gauss’ and Faraday’s Laws for  E  ( D ) - field </li></ul><ul><li>Gauss’ and Maxwell’s Laws ...
Gauss’ and Faraday’s Laws for  E Div  = micro-flux per unit of volume Rot  = micro-circulation per unit of area B c dS Far...
Gauss’ and Maxwell’s Law for  B S V dV B Gauss’ Law : j S L Maxwell’s Fix for Ampere’s Law :
Maxwell’s Equations and the Wave Equation This is a 3-Dimensional Wave Equation  v  = 2.99… x 10 8  m/s = light velocity  ...
Harmonic Solution of the  Wave Equation: Plane Waves E  may have 3 components:  E x  E y  E z  Choose x-axis  //  E     E...
Plane waves (1): orientation of fields    -i k  e z  .E  = 0    -i k  e z  .H  = 0    -i k  e z  x E =  -i  H    -i ...
Plane waves (2): complex wave vector e z  x   e z  x  E = -E i k 2 = (  + i  ).  Result:   k  complex:  k = k Re +  i...
Plane waves (3):  B-E  correspondence Faraday:  rot  E =  -  d B/ dt Maxwell (for  j =0):  rot  H  = d D /dt: similar resu...
The Poynting vector  S Definition  (for free space) :  S = E  x  H   =  H  (-d B /dt) -  E  ( j f + d D /dt) Apply Diver...
Upcoming SlideShare
Loading in...5
×

Electromagnetic fields

1,429

Published on

University Electromagnetism:
Course slides: Part 3: Electromagnetic fields and waves

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,429
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
35
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Electromagnetic fields"

  1. 1. Electromagnetism University of Twente Department Applied Physics First-year course on Part III: Electromagnetic Waves : Slides © F.F.M. de Mul
  2. 2. Electromagnetic Waves <ul><li>Gauss’ and Faraday’s Laws for E ( D ) - field </li></ul><ul><li>Gauss’ and Maxwell’s Laws for B ( H )-field </li></ul><ul><li>Maxwell’s Equations and The Wave Equation </li></ul><ul><li>Harmonic Solution of the Wave Equation </li></ul><ul><li>Plane waves (1): orientation of field vectors </li></ul><ul><li>Plane waves (2): complex wave vector </li></ul><ul><li>Plane waves (3): the B - E correspondence </li></ul><ul><li>The Poynting Vector </li></ul>
  3. 3. Gauss’ and Faraday’s Laws for E Div = micro-flux per unit of volume Rot = micro-circulation per unit of area B c dS Faraday’s Law : S E S V dV Gauss’ Law :
  4. 4. Gauss’ and Maxwell’s Law for B S V dV B Gauss’ Law : j S L Maxwell’s Fix for Ampere’s Law :
  5. 5. Maxwell’s Equations and the Wave Equation This is a 3-Dimensional Wave Equation v = 2.99… x 10 8 m/s = light velocity In vacuum (  = 0 and j = 0): }
  6. 6. Harmonic Solution of the Wave Equation: Plane Waves E may have 3 components: E x E y E z Choose x-axis // E  E y = E z = 0 (Polarization direction = x-axis). Does a plane-wave expression for E x satisfy the wave equation? E x = E x0 exp{ i (  t-kz )} : E x0 = amplitude + polarization vector +z-axis = direction of propagation Insertion into wave equation: k 2 =  0  0  2 =  2 / c 2 k =  / c = 2  /  k = wave number ;  = wavelength (in 3D-case: k = wave vector ) Analogously: B y = B y0 exp{ i (  t-kz )}
  7. 7. Plane waves (1): orientation of fields  -i k e z .E = 0  -i k e z .H = 0  -i k e z x E = -i  H  -i k e z x H =  E +i  E (1) div E = 0 (2) div B = 0 (3) rot E = - d B/ dt (4) rot H = j f + d D /dt j f =  E Consequences: (1)+(2): E and H  e z (3)+(4): E  H If E chosen // x-axis, then H // y-axis Suppose : E // x-axis; .. propagation // +z-axis: k // e z .. E x = E x0 exp i (  t-kz ) x z y E Propag- ation H
  8. 8. Plane waves (2): complex wave vector e z x e z x E = -E i k 2 = (  + i  ).  Result: k complex: k = k Re + i k Im exp (-i kz ) = exp (-i k Re z ) . exp ( k Im z ) (1)  -i k e z .E = 0 (2)  -i k e z .H = 0 (3)  -i k e z x E = -i  H (4)  -i k e z x H =  E +i  E (1)+(2): E and H  e z (3)+(4): E  H Suppose : E // x-axis; .. propagation // +z-axis: k // e z .. E x = E x0 exp i (  t-kz ) x z y E Propag- ation H } harmonic } k Im < 0 : absorption >0 : amplification (“laser”)
  9. 9. Plane waves (3): B-E correspondence Faraday: rot E = - d B/ dt Maxwell (for j =0): rot H = d D /dt: similar result Suppose : E // x-axis; B // y-axis; .. propagation // +z-axis: k // e z .. E x = E x0 exp i (  t-kz ) .. B y = B y0 exp i (  t-kz ) x z y E Propag- ation B
  10. 10. The Poynting vector S Definition (for free space) : S = E x H = H  (-d B /dt) - E  ( j f + d D /dt) Apply Divergence Theorem to integrate over wave surface A: S = energy outflux per m 2 = Intensity [W/m 2 ]  S =  ( E  H ) = H  (  E ) - E  (  H ) = { Change in Electro- magnetic field energy { Joule heating losses [J/s] { Outflux of energy [J/s] = [W] Direction of S : // k E H k S
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×